linux资源-磁盘

1. LVM

   LVM 是 Logical Volume Manager(逻辑卷管理器)的简写,LVM将一个或多个硬盘的分区在逻辑上集合,相当于一个大硬盘来使用,当硬盘的空间不够使用的时候,可以继续将其它的硬盘的分区加入其中,这样可以实现磁盘空间的动态管理,相对于普通的磁盘分区有很大的灵活性。与传统的磁盘与分区相比,LVM为计算机提供了更高层次的磁盘存储。它使系统管理员可以更方便的为应用与用户分配存储空间。在LVM管理下的存储卷可以按需要随时改变大小与移除(可能需对文件系统工具进行升级)。

 PV 物理卷(physical volume):是对物理磁盘和经过RAID的逻辑磁盘的总称,是LVM的基本存储逻辑块,但和基本的物理存储介质(如分区、磁盘等)比较,却包含有与LVM相关的管理参数。

 vg 卷组(Volume Group):LVM卷组(类似于非LVM系统中的物理硬盘)由物理卷组成。可以在卷组上创建一个或多个“LVM分区”(逻辑卷),LVM卷组由一个或多个物理卷组成

 lv 逻辑卷(logical volume):LVM的逻辑卷(类似于非LVM系统中的硬盘分区),在逻辑卷之上可以建立文件系统(比如/home或者/usr等)。

2. 文件系统

用户在硬件存储设备中执行的文件建立、写入、读取、修改、转存与控制等操作都是依 靠文件系统来完成的。文件系统的作用是合理规划硬盘,以保证用户正常的使用需求。Linux 系统支持数十种的文件系统,而最常见的文件系统如下所示。

  • Ext3:是一款日志文件系统,能够在系统异常宕机时避免文件系统资料丢失,并 能自动修复数据的不一致与错误。然而,当硬盘容量较大时,所需的修复时间也 会很长,而且也不能百分之百地保证资料不会丢失。它会把整个磁盘的每个写入 动作的细节都预先记录下来,以便在发生异常宕机后能回溯追踪到被中断的部分, 然后尝试进行修复。

  • Ext4:Ext3 的改进版本,作为 RHEL 6 系统中的默认文件管理系统,它支持的存储容 量高达 1EB(1EB=1,073,741,824GB),且能够有无限多的子目录。另外,Ext4 文件系 统能够批量分配 block 块,从而极大地提高了读写效率。

  • XFS:是一种高性能的日志文件系统,而且是 RHEL 7 中默认的文件管理系统,它的 优势在发生意外宕机后尤其明显,即可以快速地恢复可能被破坏的文件,而且强大的 日志功能只用花费极低的计算和存储性能。并且它最大可支持的存储容量为 18EB, 这几乎满足了所有需求。

计算机系统在发展过程中产生了众多的文件系统,为了使用户在读取或写入文件时不用
关心底层的硬盘结构,Linux 内核中的软件层为用户程序提供了一个 VFS(Virtual File System, 虚拟文件系统)接口,这样用户实际上在操作文件时就是统一对这个虚拟文件系统进行操作 了。如图所示为 VFS 的架构示意图。

 

 

 3 RAID独立冗余磁盘阵列

RAID(Redundant Array of Independent Disks,独立冗余磁盘阵列)。

RAID 技术通过把多个硬盘设备组合成一个容量更大、安全性更好的磁盘阵列,并把数据切割成多个区段后分别存放在各个不同的物理硬盘设备上,然后利用分散读写技术来提升磁盘阵列整体的性能,同时把多个重要数据的副本同步到不同的物理硬盘设备上,从而起到了非常好的数据冗余备份效果。

使用Raid需要额外的存储设备,增加了成本。但RAID 不仅降低了硬盘设备损坏后丢失数据的几率,还提升了硬盘设备的读写速度,所以它在绝大多数运营商或大中型企业中得以广泛部署和应用。常见的RAID 磁盘阵列有十几种,最常见的为Raid0,raid1,raid5,raid10。

raid0

RAID0 是一种简单的、无数据校验的数据条带化技术。实际上不是一种真正的 RAID ,因为它并不提供任何形式的冗余策略。 RAID0 将所在磁盘条带化后组成大容量的存储空间(如图 2 所示),将数据分散存储在所有磁盘中,以独立访问方式实现多块磁盘的并读访问。由于可以并发执行 I/O 操作,总线带宽得到充分利用。再加上不需要进行数据校验,RAID0 的性能在所有 RAID 等级中是最高的。理论上讲,一个由 n 块磁盘组成的 RAID0 ,它的读写性能是单个磁盘性能的 n 倍,但由于总线带宽等多种因素的限制,实际的性能提升低于理论值。

RAID0 具有低成本、高读写性能、 100% 的高存储空间利用率等优点,但是它不提供数据冗余保护,一旦数据损坏,将无法恢复。 因此, RAID0 一般适用于对性能要求严格但对数据安全性和可靠性不高的应用,如视频、音频存储、临时数据缓存空间等。

raid1

RAID1 称为镜像,它将数据完全一致地分别写到工作磁盘和镜像 磁盘,它的磁盘空间利用率为 50% 。 RAID1 在数据写入时,响应时间会有所影响,但是读数据的时候没有影响。 RAID1 提供了最佳的数据保护,一旦工作磁盘发生故障,系统自动从镜像磁盘读取数据,不会影响用户工作

raid5

RAID5 应该是目前最常见的 RAID 等级,RAID5 技术是把硬盘设备的数据奇偶校验信息保存到其他硬盘设备中。

RAID 5 磁盘阵列组中数据的奇偶校验信息并不是单独保存到某一块硬盘设备中,而是存储到除自身以外的其他每一块硬盘设备上,这样的好处是其中任何一设备损坏后不至于出现致命缺陷。

RAID5 的磁盘上同时存储数据和校验数据,数据块和对应的校验信息存保存在不同的磁盘上,当一个数据盘损坏时,系统可以根据同一条带的其他数据块和对应的校验数据来重建损坏的数据。与其他 RAID 等级一样,重建数据时, RAID5 的性能会受到较大的影响。RAID5 兼顾存储性能、数据安全和存储成本等各方面因素,它可以理解为 RAID0 和 RAID1 的折中方案,是目前综合性能最佳的数据保护解决方案。 RAID5 基本上可以满足大部分的存储应用需求,数据中心大多采用它作为应用数据的保护方案。

raid10

RAID 10 技术是RAID 1+RAID 0 技术的一个“组合体”。RAID 10 技术需要至少4 块硬盘来组建,其中先分别两两制作成RAID 1 磁盘阵列,以保证数据的安全性;然后再对两个RAID1 磁盘阵列实施RAID0 技术,进一步提高硬盘设备的读写速度。这样从理论上来讲,只要坏的不是同一组中的所有硬盘,那么最多可以损坏50%的硬盘设备而不丢失数据。由于RAID10 技术继承了RAID0的高读写速度和RAID1 的数据安全性,在不考虑成本的情况下RAID10 的性能都超过了RAID 5,因此当前成为广泛使用的一种存储技术。

4. 磁盘性能指标

  I/O 的概念,从字义来理解就是输入输出。操作系统从上层到底层,各个层次之间均存在 I/O。比如,CPU 有 I/O,内存有 I/O, VMM 有 I/O, 底层磁盘上也有 I/O,这是广义上的 I/O。通常来讲,一个上层的 I/O 可能会产生针对磁盘的多个 I/O,也就是说,上层的 I/O 是稀疏的,下层的 I/O 是密集的。

  磁盘的 I/O,顾名思义就是磁盘的输入输出。输入指的是对磁盘写入数据,输出指的是从磁盘读出数据

磁盘性能指标:磁盘的 IOPS和吞吐量

IOPS (Input/Output Per Second)即每秒的输入输出量(或读写次数),是衡量磁盘性能的主要指标之一。IOPS是指单位时间内系统能处理的I/O请求数量,I/O请求通常为读或写数据操作请求。随机读写频繁的应用,如OLTP(Online Transaction Processing),IOPS是关键衡量指标。另一个重要指标是数据吞吐量(Throughput),指单位时间内可以成功传输的数据数量(每秒磁盘 I/O 的流量,即磁盘写入加上读出的数据的大小)。对于大量顺序读写的应用,如OLAP,则更关注吞吐量指标。

每秒 I/O 吞吐量= IOPS* 平均 I/O SIZE。从公式可以看出: I/O SIZE 越大,IOPS 越高,那么每秒 I/O 的吞吐量就越高。

iops计算方式

  对于磁盘来说一个完整的IO操作是这样进行的:当控制器对磁盘发出一个IO操作命令的时候,磁盘的驱动臂(Actuator Arm)带读写磁头(Head)离开着陆区(Landing Zone,位于内圈没有数据的区域),移动到要操作的初始数据块所在的磁道(Track)的正上方,这个过程被称为寻址(Seeking),对应消耗的时间被称为寻址时间(Seek Time);但是找到对应磁道还不能马上读取数据,这时候磁头要等到磁盘盘片(Platter)旋转到初始数据块所在的扇区(Sector)落在读写磁头正上方的之后才能开始读取数据,在这个等待盘片旋转到可操作扇区的过程中消耗的时间称为旋转延时(Rotational Delay);接下来就随着盘片的旋转,磁头不断的读/写相应的数据块,直到完成这次IO所需要操作的全部数据,这个过程称为数据传送(Data Transfer),对应的时间称为传送时间(Transfer Time)。完成这三个步骤之后一次IO操作也就完成了。

iops=1/(寻址时间+旋转延时+传送时间)

io读写类型

大 / 小块 I/O

这个数值指的是控制器指令中给出的连续读出扇区数目的多少。如果数目较多,如 64,128 等,我们可以认为是大块 I/O;反之,如果很小,比如 4,8,我们就会认为是小块 I/O,实际上,在大块和小块 I/O 之间,没有明确的界限。

连续 / 随机 I/O

连续 I/O 指的是本次 I/O 给出的初始扇区地址和上一次 I/O 的结束扇区地址是完全连续或者相隔不多的。反之,如果相差很大,则算作一次随机 I/O

连续 I/O 比随机 I/O 效率高的原因是:在做连续 I/O 的时候,磁头几乎不用换道,或者换道的时间很短;而对于随机 I/O,如果这个 I/O 很多的话,会导致磁头不停地换道,造成效率的极大降低。

顺序 / 并发 I/O

从概念上讲,并发 I/O 就是指向一块磁盘发出一条 I/O 指令后,不必等待它回应,接着向另外一块磁盘发 I/O 指令。对于具有条带性的 RAID(LUN),对其进行的 I/O 操作是并发的,例如:raid 0+1(1+0),raid5 等。反之则为顺序 I/O。

 

4 IO性能测试

4.1 dd 命令

Linux dd 命令用于读取、转换并输出数据。dd 可从标准输入或文件中读取数据,根据指定的格式来转换数据,再输出到文件、设备或标准输出。

我们可以利用 dd 命令的复制功能,测试某个磁盘的 IO 性能,需要注意的是 dd 命令只能大致测出磁盘的 IO 性能,不是非常准确

测试写性能命令:

复制代码
[root@server-68.2.stage.polex.io var ]$ time dd if=/dev/zero of=test.file bs=256M count=5 oflag=direct
2+0 records in
2+0 records out
2147483648 bytes (2.1 GB) copied, 13.5487 s, 159 MB/s

real    0m13.556s
user    0m0.000s
sys    0m0.888s 
复制代码

可以看到,该分区磁盘写入速率为 159M/s,其中:

  • /dev/zero 伪设备,会产生空字符流,对它不会产生 IO 。
  • if 参数用来指定 dd 命令读取的文件。
  • of 参数用来指定 dd 命令写入的文件。
  • bs 参数代表每次写入的块的大小。
  • count 参数用来指定写入的块的个数。
  • offlag=direc 参数测试 IO 时必须指定,代表直接写如磁盘,不使用 cache 。

测试读性能命令:

[root@server-68.2.stage.polex.io var ]$ dd if=test.file of=/dev/null  iflag=direct
4194304+0 records in
4194304+0 records out
2147483648 bytes (2.1 GB) copied, 4.87976 s, 440 MB/s

可以看到,该分区的读取速率为 440MB/s

2.3 fio 命令

fio 命令是专门测试 iops 的命令,比 dd 命令准确,fio 命令的参数很多,这里举几个例子供大家参考:

顺序读:

fio -filename=/var/test.file -direct=1 -iodepth 1 -thread -rw=read -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_r

随机写:

fio -filename=/var/test.file -direct=1 -iodepth 1 -thread -rw=randwrite -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_randw

顺序写:

fio -filename=/var/test.file -direct=1 -iodepth 1 -thread -rw=write -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_w

混合随机读写:

fio -filename=/var/test.file -direct=1 -iodepth 1 -thread -rw=randrw -rwmixread=70 -ioengine=psync -bs=16k -size=2G -numjobs=10 -runtime=60 -group_reporting -name=test_r_w -ioscheduler=noop

 

5 IO性能调优

  从经验上讲,我们在测试工作中,我们主要关注 IOPS 和吞吐量以及磁盘的 busy% 这三个数值。如果 IOPS 和吞吐量均很低,磁盘的 busy% 也很低,我们会认为磁盘压力过小,造成吞吐量和 IOPS 过低;只有在 IOPS 和吞吐量均很低,磁盘的 busy% 很高(接近 100%)的时候,我们才会从磁盘 I/O 方面分析 I/O 性能

 

posted @ 2021-01-11 21:52  独特的数字  阅读(132)  评论(0)    收藏  举报