Partition Equal Subset Sum

Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

Note:

  1. Each of the array element will not exceed 100.
  2. The array size will not exceed 200.

Example 1:

Input: [1, 5, 11, 5]

Output: true

Explanation: The array can be partitioned as [1, 5, 5] and [11].

 

Example 2:

Input: [1, 2, 3, 5]

Output: false

Explanation: The array cannot be partitioned into equal sum subsets.

 Idea 1. Subset sum

[1, 5, 11, 5]

containing 1: [1], sum {1}

containing 5: [5], [1, 5]   sum {5, 6}

containing 11: [11], [1, 11], [5, 11], [1, 5, 11]  {11, 12, 16, 17}

containing: 5: [5], [1, 5], [5, 5], [1, 5, 5], [11, 5], [1, 11, 5], [5, 11, 5], [1, 5, 11, 5], {5, 6, 10, 11, 16, 17, 21, 22}

Time complexity: O(2^n -1)

Space complexity: O(2^n -1)

 1 class Solution {
 2     public boolean canPartition(int[] nums) {
 3         int totalSum = 0;
 4         for(int num: nums) {
 5             totalSum += num;
 6         }
 7         if(totalSum%2 != 0) {
 8             return false;
 9         }
10         
11         List<List<Integer>> endSum = new ArrayList<>();
12         for(int i = 0; i < nums.length; ++i) {
13             List<Integer> curr = new ArrayList<>();
14             if(nums[i] == totalSum/2) {
15                 return true;
16             }
17             curr.add(nums[i]);
18             for(int j = 0; j < i; ++j) {
19                 for(int val: endSum.get(j)) {
20                     int currSum = val + nums[i];
21                     if(currSum == totalSum/2) {
22                         return true;
23                     }
24                     curr.add(currSum);
25                 }
26             }
27             endSum.add(curr);
28         }
29         return false;
30     }
31 }

Idea 2: dynamic programming. Let dp[i][j] represents if the subset sum from num[0..i] could reach j, 

dp[i][j] = dp[i-1][j] not picking nums[i], 

    dp[i-1][j-nums[i]] picking nums[i]

Note. to initialise dp[-1][0] = 0

Time complexity: O(n*target)

Space complexity: O(n*target)

 1 class Solution {
 2     private void backtrack(int[] nums, int i, boolean[][] dp, int target) {
 3         if(i > nums.length) {
 4             return;
 5         }
 6         
 7         for(int j = 1; j <= target; ++j) {
 8             dp[i][j] = dp[i-1][j];
 9             if(j >= nums[i-1]) {
10                 dp[i][j] = dp[i][j] || dp[i-1][j-nums[i-1]];
11             }
12         }
13         backtrack(nums, i+1, dp, target);
14     }
15     
16     public boolean canPartition(int[] nums) {
17         int totalSum = 0;
18         for(int num: nums) {
19             totalSum += num;
20         }
21         
22         if(totalSum %2 != 0) {
23             return false;
24         }
25         int n = nums.length;
26         int target = totalSum/2;
27         boolean[][] dp = new boolean[n+1][target+1];
28         for(int i = 0; i <= n; ++i) {
29             dp[i][0] = true;
30         }
31         
32         backtrack(nums, 1, dp, target);
33         return dp[n][target];
34     }
35 }
 1 class Solution {
 2     public boolean canPartition(int[] nums) {
 3        int totalSum = 0;
 4        for(int num: nums) {
 5            totalSum += num;
 6        }
 7         
 8        if(totalSum %2 != 0) {
 9            return false;
10        }
11         
12        int target = totalSum/2;
13        int m = nums.length;
14        boolean[][] dp = new boolean[m+1][target+1];
15        dp[0][0] = true;
16         
17        for(int i = 1; i <= m; ++i) {
18            for(int j = 1; j <= target; ++j) {
19                dp[i][j] = dp[i-1][j];
20                if(j >= nums[i-1]) {
21                    dp[i][j] = dp[i][j] || dp[i-1][j-nums[i-1]];
22                }
23            }
24        }
25         
26        return dp[m][target];
27     }
28 }

Idea 2. dynamic programming, 二维到一维的优化,注意在二维公式中sum的循环是从小到大(从左到右),但是是前一行,转换成一维,需要用到前边的状态,所以要从右向左

 dp[j] = dp[j] || dp[j-nums[i]]

dp[0] = true

Time complexity: O(n*target)

Space complexity: O(target)

 1 class Solution {
 2     public boolean canPartition(int[] nums) {
 3       int totalSum = 0;
 4         
 5       for(int num: nums) {
 6           totalSum += num;
 7       }
 8         
 9       if(totalSum % 2 != 0) {
10           return false;
11       }
12         
13       int target = totalSum/2;
14       int n = nums.length;
15       boolean[] dp = new boolean[target+1];
16       dp[0] = true;
17         
18       for(int i = 0; i < n; ++i) {
19           for(int j = target; j >= nums[i]; --j) {
20               dp[j] = dp[j] || dp[j-nums[i]];
21           }
22       }
23     
24       return dp[target];
25     }
26 }

posted on 2019-04-02 08:51  一直走在路上  阅读(110)  评论(0)    收藏  举报

导航