矩阵乘积的意义
Matrix multiplication
Matrix multiplies vector
Column vector
\[\begin{bmatrix}
1&2&1\\
2&1&3\\
1&0&2
\end{bmatrix}
\begin{bmatrix}1\\2\\0\end{bmatrix}
= 1\begin{bmatrix}1\\2\\1\end{bmatrix}+2\begin{bmatrix}2\\1\\0\end{bmatrix}+0\begin{bmatrix}1\\3\\2\end{bmatrix}
= \begin{bmatrix}5\\4\\1\end{bmatrix}.\]
- Notes: A matrix multiplies a column vector generate a new column vector, which is a combination of the column vectors in the matrix.
Row vector
\[\begin{bmatrix}1&2&0\end{bmatrix}
\begin{bmatrix}
1&2&1\\
2&1&3\\
1&0&2
\end{bmatrix}
=1\begin{bmatrix}1&2&1\end{bmatrix}+2\begin{bmatrix}2&1&3\end{bmatrix}+0\begin{bmatrix}1&0&2\end{bmatrix}=\begin{bmatrix}5&4&7\end{bmatrix}.\]
- Notes: A matrix multiplies a row vector generate a new row vector, which is a combination of the row vectors in the matrix.
Matrix multiplies matrix
First situation:
\[\begin{bmatrix}
1&2&1\\
1&0&-1\\
\end{bmatrix} A_{3 \times n}
= \begin{bmatrix}
row_1\\
row_2\\
\end{bmatrix} A_{3 \times n}
= \begin{bmatrix}
row_1 A_{3 \times n}\\
row_2 A_{3 \times n}\\
\end{bmatrix}
= B_{2 \times n}.\]
- The problem is transformed to several calculations of multiplication of matrix and row vector.
- The new matrix \(B\) has \(2\) rows, which are the combinations of the row vectors in the matrix \(A\).
Second situation:
\[A_{m \times 3}
\begin{bmatrix}
1&1\\
2&0\\
1&-1\\
\end{bmatrix}
= A_{m \times 3} \begin{bmatrix}
column_1&column_2
\end{bmatrix}
=\begin{bmatrix}
A_{m \times 3}column_1 & A_{m \times 3} column_2
\end{bmatrix} = B_{m \times 2}.\]
- The problem is transformed to several calculations of multiplication of matrix and column vector.
- The new matrix \(B\) has \(2\) columns, which are the combinations of the column vectors in the matrix \(A\).

浙公网安备 33010602011771号