PAT A1103 Integer Factorization Go语言题解及注意事项
The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤), K (≤) and P (1). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i]
(i
= 1, ..., K
) is the i
-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 1, or 1, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { , } is said to be larger than { , } if there exists 1 such that ai=bi for i<L and aL>bL.
If there is no solution, simple output Impossible
.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
思路:
暴力求解100%会超时,这里使用DFS进行求解,由题目要求,我们从最大的因子开始从大往小搜,在因子合相同时总是能先搜到最优解然后返回。
Solution(Golang):
package main import ( "fmt" ) var ( temp, fac []int ans [100]int maxsum int = 0 n, p, k int flag = false ) func pow(n, p int) int { a := n for i := 1; i < p; i++ { a *= n } return a } func init1() { fac = append(fac, 0) for i := 1; pow(i, p) <= n; i++ { fac = append(fac, pow(i, p)) } } func dfs(index, num, value, sumfac int) { if num > k || value > n { return } if num == k { if value == n && sumfac > maxsum { flag = true maxsum = sumfac for i, v := range temp { ans[i] = v } } return } temp = append(temp, index) //fmt.Println(index) dfs(index, num+1, value+fac[index], sumfac+index) temp = temp[0 : len(temp)-1] if index > 1 { dfs(index-1, num, value, sumfac) } } func main() { fmt.Scan(&n, &k, &p) init1() dfs(len(fac)-1, 0, 0, 0) //fmt.Println(ans) if !flag { fmt.Println("Impossible") } else { fmt.Printf("%d = %d^%d", n, ans[0], p) for i := 1; i < k; i++ { fmt.Printf(" + %d^%d", ans[i], p) } } return }