赞助
摘要:概述 自然语言是非常复杂多变的,计算机也不认识咱们的语言,那么咱们如何让咱们的计算机学习咱们的语言呢?首先肯定得对咱们的所有文字进行编码吧,那咱们很多小伙伴肯定立马就想出了这还不简单嘛,咱们的计算机不都是ASCII编码的嘛,咱直接拿来用不就好啦?我只能说too young too simple。咱们 阅读全文
posted @ 2020-02-09 19:42 HappyPuppy 阅读 (109) 评论 (0) 编辑
摘要:概述 对于计算机视觉的应用现在是非常广泛的,但是它背后的原理其实非常简单,就是将每一个像素的值pixel输入到一个DNN中,然后让这个神经网络去学习这个模型,最后去应用这个模型就可以了。听起来是不是很简单,其实如果大家深入研究的话,这里面还是有很多内容去学习的,例如:咱们的图片大小可能不一样,同一张 阅读全文
posted @ 2020-02-05 23:30 HappyPuppy 阅读 (126) 评论 (0) 编辑
摘要:概述 神经网络是深度学习的基础,它在人工智能中有着非常广泛的应用,它既可以应用于咱们前面的章节所说的Linear Regression, classification等问题,它还广泛的应用于image recognition,NLP 等等应用中,当然啦,这一节咱们主要讲述神经网络的最基础的结构以及应 阅读全文
posted @ 2020-02-03 19:55 HappyPuppy 阅读 (126) 评论 (0) 编辑
摘要:概述 前面几节讲的是linear regression的内容,这里咱们再讲一个非常常用的一种模型那就是classification,classification顾名思义就是分类的意思,在实际的情况是非常常用的,例如咱们可以定义房价是否过高,如果房价高于100万,则房价过高,设置成true;如果房价低 阅读全文
posted @ 2020-02-01 22:45 HappyPuppy 阅读 (141) 评论 (0) 编辑
摘要:概述 这一节主要介绍一下TensorFlow在应用的过程中的几个小的知识点,第一个是关于features的处理的,例如Bucketized (Binned) Features 和 Feature scalling。第二个是简单的介绍一下常用的几个Optimizer之间的区别,例如SGD, Adagr 阅读全文
posted @ 2020-01-30 23:26 HappyPuppy 阅读 (101) 评论 (0) 编辑
摘要:TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构即:Tensor和Dataset; 这里咱们开始介绍TensorFlow的建模过程以及验证模型的一些 阅读全文
posted @ 2020-01-29 20:13 HappyPuppy 阅读 (135) 评论 (0) 编辑
摘要:好了,咱们今天终于进入了现阶段机器学习领域内最流行的一个框架啦——TensorFlow。对的,这款由谷歌开发的机器学习框架非常的简单易用并且得到了几乎所有主流的认可,谷歌为了推广它的这个框架甚至单独开辟了免费学习这个框架的视频教程,可惜这些教程都是基于TensorFlow1.0版本的,一直没有更新。 阅读全文
posted @ 2020-01-28 17:14 HappyPuppy 阅读 (196) 评论 (0) 编辑
摘要:前面一节咱们已经介绍了决策树的原理已经在sklearn中的应用。那么这里还有两个数据处理和sklearn应用中的小知识点咱们还没有讲,但是在实践中却会经常要用到的,那就是交叉验证cross_validation和Pipeline。cross_validation是保证了咱们的模型不受数据分布的影响, 阅读全文
posted @ 2020-01-26 20:31 HappyPuppy 阅读 (131) 评论 (0) 编辑
摘要:咱们正式进入了机器学习的模型的部分,虽然现在最火的的机器学习方面的库是Tensorflow, 但是这里还是先简单介绍一下另一个数据处理方面很火的库叫做sklearn。其实咱们在前面已经介绍了一点点sklearn,主要是在categorical data encoding那一块。其实sklearn在数 阅读全文
posted @ 2020-01-22 00:43 HappyPuppy 阅读 (141) 评论 (0) 编辑
摘要:概述:上节咱们说了特征工程是机器学习的一个核心内容。然后咱们已经学习了特征工程中的基础内容,分别是missing value handling和categorical data encoding的一些方法技巧。但是光会前面的一些内容,还不足以应付实际的工作中的很多情况,例如如果咱们的原始数据的fea 阅读全文
posted @ 2020-01-19 12:09 HappyPuppy 阅读 (161) 评论 (0) 编辑