λ-矩阵的相抵标准型

\(\S 1\ 行列式因子\)

Def1.

\( \color{red}{Def} 设\lambda-矩阵A(\lambda)\in M_{m\times n}(\mathbb{F[\lambda]})的秩为r,对于正整数k,1\leq k\leq r,A(\lambda)中必有非零的k级子式.A(\lambda)的全部k级子式的最大公因式D_k(A(\lambda))称为A(\lambda)的\color{red}{k级行列式因子(the\ k-th\ determinant divisor)}. \)

\(例1.\)

\( 设A(\lambda)\in M_n{\mathbb(F[\lambda])},D_1(A(\lambda))=(a_{11}(\lambda),...,a_{1n}(\lambda),a_{21}(\lambda),...,a_{nn}(\lambda)).若rank(A(\lambda))=n,则D_n(A(\lambda))=c\ det(A(\lambda)),其中c\in \mathbb{F}. \)

\(Prop1.\)

\( \color{red}{prop}相抵的\lambda-矩阵有相同的各级行列式因子. \)

\(RK\)

\( D_k(A(\lambda)P(\lambda))=D_k([A(\lambda)P(\lambda)]^{T}) \)

点击查看证明$PF\ of\ prop$ $ 只需证若B(\lambda)由A(\lambda)做进一步初等变换得到,则 D_k(B(\lambda))=D_k(A(\lambda)),\forall 1\leq k\leq r,r=r(A(\lambda)). 只需证D_k(A(\lambda))\mid D_k(B(\lambda))\ (可以得到反过来的结论然后相等)\ \iff D_k(A(\lambda))\mid \forall B(\lambda)的k级子式.\\ (1)A(\lambda) 第i行\times c\rightarrow B(\lambda), $

\[\left | B(\lambda)\left [\begin{matrix} i_1&...&i_k\\ j_i&...&j_k\end{matrix}\right ] \right |= \left \{ \begin{aligned} \left | A(\lambda)\left [\begin{matrix} i_1&...&i_k\\ j_i&...&j_k\end{matrix}\right ] \right | ,i\notin\{i_1,...,i_k\}\\ c\left | A(\lambda)\left [\begin{matrix} i_1&...&i_k\\ j_i&...&j_k\end{matrix}\right ] \right |,i\in\{i_1,...,i_k\} \end{aligned} \right . \Rightarrow\\ D_k(A(\lambda))\mid\left | B(\lambda)\left [\begin{matrix} i_1&...&i_k\\ j_i&...&j_k\end{matrix}\right ] \right | \Rightarrow D_k(A(\lambda))\mid D_k(B(\lambda)) \]

\( (2)A(\lambda) 的第i行\times \varphi 加到第j行,不妨设i<j. \)

\[若j\notin \{i_1,...i_k\},则\left |B(\lambda)\left [\begin{matrix} i_1&...&i_k\\ j_i&...&j_k\end{matrix}\right ] \right |=\left |A(\lambda)\left [\begin{matrix} i_1&...&i_k\\ j_i&...&j_k\end{matrix}\right ] \right |\\ 若j\in\{i_1,...,i_k\}(不妨设i_1=j)\\ \left |B(\lambda)\left [\begin{matrix} i_1&...&i_k\\ j_i&...&j_k\end{matrix}\right ]\right | =\\ \left | A(\lambda)\left [\begin{matrix} i_1&...&i_k\\ j_i&...&j_k\end{matrix}\right ]\right |+\varphi(\lambda)\left |A(\lambda)\left [\begin{matrix} i_1&...&i_k\\ j_i&...&j_k\end{matrix}\right ] \right |\\ 此时D_k(A(\lambda))\mid D_k(B(\lambda)) \]

\( (3)A(\lambda)交换i,j行得到B(\lambda),类似地,可以证明. \)

\(Thm2.\)

\( \color{red}{Thm} \begin{pmatrix} d_1{\lambda}\\ &d_2(\lambda)\\ &&...\\ &&&d_r(\lambda)\\ &&&&0\\ &&&&&...\\ &&&&&&0 \end{pmatrix} 为矩阵A(\lambda)的相抵标准型,则d_1(\lambda)=D_1(A(\lambda)),d_2(\lambda)=\frac{D_2(A(\lambda))}{D_1(A(\lambda))},...,d_r(\lambda)=\frac{D_r(A(\lambda))}{D_{r-1}(A(\lambda))}.特别地,\lambda-矩阵A(\lambda)具有唯一的相抵标准型. \)

点击查看证明 $ 取k级子式子,\left | B(\lambda)\left [\begin{matrix} i_1&...&i_k\\ j_i&...&j_k\end{matrix}\right ] \right |\neq0\iff i_s=j_s,1\leq i_1,...,i_k\leq r\\ 同时,\left | B(\lambda)\left [\begin{matrix} i_1&...&i_k\\ j_i&...&j_k\end{matrix}\right ] \right |=d_{i_1}(\lambda)...d_{i_k}(\lambda)\\ D_k(A(\lambda))=D_k(B(\lambda))=d_1(\lambda)...d_k(\lambda)\mid d_{i_1}(\lambda)...d_{i_k}(\lambda) \Rightarrow D_1(\lambda)=d_1(\lambda),d_k(\lambda)=\frac{D_k(A(\lambda))}{D_{k-1}(A(\lambda))}.\\ 唯一性:\\ 若A(\lambda)还相抵于C(\lambda)\Rightarrow C_{k}(\lambda)=\frac{D_k}{D_{k-1}}\Rightarrow C_(\lambda)=B(\lambda)\\ 因此,当判断相抵时只需要判断\lambda E_n-A与\lambda E_n-B的相抵标准型是否相同来判断相抵 $
\(RK1.\)

\( \color{blue}{RK} 设A,B\in M_n(\mathbb(F)),判断A,B是否相似著需要判断\lambda E_n-A与\lambda E_n-B是否相抵.\\ 有Thm知只需要判断\lambda E_n-A与\lambda E_n-B的相抵标准型是否相同. \)

\(\S 2\ 不变因子\)

\(Def2.\)

\( \color{red}{Def}设]lambda-矩阵A(\lambda)的秩为r.称A(\lambda)的相抵标准型的主对角线上的非零元d_1(\lambda),...,d_r(\lambda)为A(\lambda)的\color{red}{不变因子(invariant factor)}. \)

\(prop3.\)

\( 设A(\lambda),B(\lambda)\in M_{m\times n}(\mathbb(F[\lambda])).A(\lambda)与B(\lambda)\iff A(\lambda)与B(\lambda)具有相同的行列式因子\iff 具有相同的不变因子. \)

\(Cor4.\)

\( \color{red}{Cor}设A(\lambda),B(\lambda)\in M_{m\times n}(\mathbb{F[\lambda]})\subset M_{m\times n}(\mathbb{E[\lambda]}),其中\mathbb{F}\subset\mathbb{E}为数域.若A(\lambda)与B(\lambda)在数域\mathbb{E}上相抵,则A(\lambda)于B(\lambda)在\mathbb(F)上相抵. \)

\(Def3.\)

\( \color{red}{Def}设A\in M_n{\mathbb{F}},则特征矩阵\lambda E_n-A的不变因子为\color{red}{矩阵A的不变因子}. \)

\(Cor5.\)

\( \color{red}{Cor}\\ (1)设A,B\in M_n(\mathbb{F}),则A与B相似当且仅当A与B具有相同的不变因子;\\ (2)设A\in M_n(\mathbb{f}),则A于A^T相似;\\ (3)设A\in M_n(\mathbb{F})\subset M_n(\mathbb(E)),则A,B在\mathbb{F}上相似\iff 在数域\mathbb{E}上相似. \)

\(RK2.\)

\( \color{blue}{RK}利用矩阵的不变因子可以定义线性变换的不变因子. \)

\(\S 3\ 初等因子\)

\(Def4.\)

\( \color{red}{Def}设f(\lambda)\in\mathbb{F[\lambda]}为次数deg\ f(\lambda)\leq 1的首一多项式,由因式分解定理知存在两两互素的首一不可约多项式p_1(\lambda),...,p_t(\lambda)\in\mathbb{F[\lambda]}使得\\ \begin{matrix} f(\lambda)=p_1(\lambda)^{l_1}p_2(\lambda)^{l_2}...p_t(\lambda)^{l_t},l_i\leq 1,i=1,...,t. \end{matrix}\\ 称p_i(\lambda)^{l_i}为f(\lambda)的\color{red}{准素因子(primary\ divisor)}. \)

\(Def5.\)

\( \color{red}{Def}设A(\lambda)\in M_n(\mathbb{F[\lambda]}),A(\lambda)的所有次数大于零的不变因子的准素因子(相同的必须按出现的次数计算)称为A(\lambda)的\color{red}{初等因子(elementary\ divisor)}. \)

\(RK3.\)

\( \color{blue}{RK}\\ (1)矩阵A(\lambda)的初等因子于数域有关;\\ (2)在知道矩阵秩的前提下,矩阵A(\lambda)的初等因子与不变因子相互唯一确定. \)

posted @ 2024-05-17 20:59  WE-R  阅读(486)  评论(0)    收藏  举报