Attention is all you need 深入解析

 

  最近一直在看有关transformer相关网络结构,为此我特意将经典结构 Attention is all you need 论文进行了解读,并根据其源码深入解读attntion经典结构,

为此本博客将介绍如下内容:

 

论文链接:https://arxiv.org/abs/1706.03762

 

 一.Transformer结构与原理解释。

第一部分介绍Attention is all you need 结构、模块、公式。暂时不介绍什么Q K V 什么Attention 什么编解码等,单我将会根据代码解读介绍,让读者更容易理解。

①结构: Transformer由且仅由self.Attention和Feed Forward Neural Network组成,即mutil-head-attention与FFN,如下图。

 

 

 

 ②模块结构:除了以上提到mutil-head-attention与FFN外,还需有个位置编码结构positional encoding以及mask编码模块。

③公式:

位置编码公式(还有很多其它公式,该论文使用此公式)

 

 

 Q K V公式

 

 

FFN基本是由nn.Linear线性和激活变化,在后面用代码讲解。

二.代码解读。

第二部分会从模型输入开始,层层递推介绍整个编码和解码过程、以及整个过程中使用的Attention编码、FFN编码、位置编码等。

 

ENCODE模块:

 

① 编码输入数据介绍:

enc_input = [
[1, 3, 4, 1, 2, 3],
[1, 3, 4, 1, 2, 3],
[1, 3, 4, 1, 2, 3],
[1, 3, 4, 1, 2, 3]]
编码使用输入数据,为4x6行,表示4个句子,每个句子有6个单词,包含标点符号。



② 输入值的Embedding与位置编码

输入值embedding:
self.src_emb = nn.Embedding(vocab_size, d_model) # d_model=128
vocab_size:词典的大小尺寸,比如总共出现5000个词,那就输入5000。此时index为(0-4999)d_model:嵌入向量的维度,即用多少维来表示一个词或符号
随后可将输入x=enc_input,可将enc_outputs则表示嵌入成功,维度为[4,6,128]分别表示batch为4,词为6,用128维度描述词6
x = self.src_emb(x) # 词嵌入
位置编码:
以下使用位置编码公式的代码,为此无需再介绍了。
1 pe = torch.zeros(max_len, d_model)
2         position = torch.arange(0., max_len).unsqueeze(1)
3         div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))  # 偶数列
4         pe[:, 0::2] = torch.sin(position * div_term) # 奇数列
5         pe[:, 1::2] = torch.cos(position * div_term)
6         pe = pe.unsqueeze(0)

将编码进行位置编码后,位置为[1,6,128]+输入编码的[4,6,128],相当于句子已经结合了位置编码信息,作为新新的输入。

x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False)  # torch.autograd.Variable 表示有梯度的张量变量


③self.attention的编码:
在介绍此之前,先普及一个知识,若X与Y相等,则为self attention 否则为cross-attention,因为解码时候X!=Y.

 

 获取Q K V 代码,实际是一个线性变化,将以上输入x变成[4,6,512],然后通过head个数8与对应dv,dk将512拆分[8,64],随后移维度位置,变成[4,8,6,64]

1 self.WQ = nn.Linear(d_model, d_k * n_heads)  # 利用线性卷积
2 self.WK = nn.Linear(d_model, d_k * n_heads)
3 self.WV = nn.Linear(d_model, d_v * n_heads)

变化后的q k v

1 q_s = self.WQ(Q).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)  # 线性卷积后再分组实现head功能
2 k_s = self.WK(K).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)
3 v_s = self.WV(V).view(batch_size, -1, self.n_heads, self.d_v).transpose(1, 2)
4 attn_mask = attn_mask.unsqueeze(1).repeat(1, self.n_heads, 1, 1)  # 编导对应的头

随后通过以上self公式,将其编码计算

1 scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(self.d_k)
5 attn = nn.Softmax(dim=-1)(scores)
6 context = torch.matmul(attn, V)

以上编码将是encode编码得到结果,我们将得到结果进行还原:

1context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads * self.d_v)  # 将其还原
2output = self.linear(context)  # 通过线性又将其变成原来模样维度
3layer_norm(output + Q)  # 这里加Q 实际是对Q寻找

以上将重新得到新的输入x,维度为[4,6,128]

 

 

④ FFN编码:

将以上的输出维度为[4,6,128]进行FNN层变化,实际类似线性残差网络变化,得到最终输出

 

 1 class PoswiseFeedForwardNet(nn.Module):
 2 
 3     def __init__(self, d_model, d_ff):
 4         super(PoswiseFeedForwardNet, self).__init__()
 5         self.l1 = nn.Linear(d_model, d_ff)
 6         self.l2 = nn.Linear(d_ff, d_model)
 7 
 8         self.relu = GELU()
 9         self.layer_norm = nn.LayerNorm(d_model)
10 
11     def forward(self, inputs):
12         residual = inputs
13         output = self.l1(inputs)  # 一层线性卷积
14         output = self.relu(output)
15         output = self.l2(output)  # 一层线性卷积
16         return self.layer_norm(output + residual)

 

⑤ 重复以上步骤编码,即将得到经过FFN变化的输出x,维度为[4,6,128],将其重复步骤③-④,因其编码为6个,可重复5个便是完成相应的编码模块。

 

 

 

DECODE模块:

 

①解码输入数据介绍,包含以下数据输入(dec_input)、enc_input的输入与解码后输出的数据,维度为[4,6,128]:

dec_input = [
[1, 0, 0, 0, 0, 0],
[1, 3, 0, 0, 0, 0],
[1, 3, 4, 0, 0, 0],
[1, 3, 4, 1, 0, 0]]


②dec_input的Embedding与位置编码
因其与encode的实现方法一致,只需将enc_input使用dec_input取代,得到dec_outputs,因此这里将不在介绍。

③mask编码,包含整体编码与局部编码
整体编码,代码如下:
1 def get_attn_pad_mask(seq_q, seq_k, pad_index):
2     batch_size, len_q = seq_q.size()
3     batch_size, len_k = seq_k.size()
4     pad_attn_mask = seq_k.data.eq(pad_index).unsqueeze(1)
5     pad_attn_mask = torch.as_tensor(pad_attn_mask, dtype=torch.int)
6     return pad_attn_mask.expand(batch_size, len_q, len_k)

以上代码实际是将dec_input进行处理,实际变成以下数据:

   [[0, 1, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 1, 1]]

将其增添维度为[4,1,6],并将其扩张为[4,6,6]

局部代码编写,实际为上三角矩阵:

[[0. 1. 1. 1. 1. 1.]
[0. 0. 1. 1. 1. 1.]
[0. 0. 0. 1. 1. 1.]
[0. 0. 0. 0. 1. 1.]
[0. 0. 0. 0. 0. 1.]
[0. 0. 0. 0. 0. 0.]]
将以上数据添加维度为[1,6,6],在将扩展变成[4,6,6]
关于整体mask与局部mask编码,我的理解是整体信息为语句4个词6个,根据解码输入编码整体信息,而局部编码是基于一个语句6*6编码信息,将其扩张重复到4个语句,
使其mask获得整体信息与局部信息。
1         dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs, self.pad_index)  # 整体编码的mask
2         dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)
3         dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)  # torch.gt(a,b) a>b 则为1否则为0
4         dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs, self.pad_index)

最终将mask整合,获取dec_self_attn_mask信息,同理dec_enc_attn_mask(维度为解码编码词维度)采用dec_self_attn_mask的第一步便可获取。

 

④编码输入self-Attention,包含2部分

解码输入dec_outputs进行self.Attention:

实际使用以上Q K V公式,具体实现和编码实现方法一致,唯一不同是

在Q*KT会使用解码maskdec_self_attn_mask,其重要代码为scores.masked_fill_(attn_mask, -1e9),其它代码为:

 1 class ScaledDotProductAttention(nn.Module):
 2 
 3     def __init__(self, d_k, device):
 4         super(ScaledDotProductAttention, self).__init__()
 5         self.device = device
 6         self.d_k = d_k
 7 
 8     def forward(self, Q, K, V, attn_mask):
 9         scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(self.d_k)
10         attn_mask = torch.as_tensor(attn_mask, dtype=torch.bool)
11         attn_mask = attn_mask.to(self.device)
12         scores.masked_fill_(attn_mask, -1e9)  # it is true give -1e9
13         attn = nn.Softmax(dim=-1)(scores)
14         context = torch.matmul(attn, V)
15         return context, attn

 以上代码将执行以下代码:

context, attn = ScaledDotProductAttention(d_k=self.d_k, device=self.device)(Q=q_s, K=k_s, V=v_s,
attn_mask=attn_mask)
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads * self.d_v) # 将其还原
output = self.linear(context) # 通过线性又将其变成原来模样维度
dec_outputs = self.layer_norm(output + Q) # 这里加Q 实际是对Q寻找

 到此为止已经完成了解码输入的self-attention模块,输出为dec_outputs实际除了增加mask编码调整Q*KT以外,其它完全相同。

编码输出dec_outputs进行Cross Attention:

dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask) # 重点说明enc_outputs来源编码结果,是一直不变的
以上为Cross Attention 过程,以上代码除了Q来源dec_outputs,K V 来源编码输出enc_outputs以外,即论文所说X与Y不等得到的Q K V称为Cross Attention。
实际以上代码与执行解码self-Attention方法完全一致,仅仅mask更改上文提供的方法,得到输出结果为dec_outputs,因此这里将不在解释了。


⑤ FFN编码。
通过④的attention编码,得到dec_outputs后,采用编码步骤④的FNN方法。



⑥ 重复步骤④-⑤多次,便实现了解码过程。

至此,本文已完全解读完Attention is all you need的编码与解码结构。
 

 个人重点总结:

①未使用通常kernel=3的CNN卷积,而所有均使用Linear卷积;

②编码传递K V 解码传递Q;

③self-attention 和 cross attention本质是X与Y值不同,即得到Q 和 K V 数据来源不同,但实现方法一致;

④ transformer重点模块为attention(一般是mutil-head attention)、FFN、位置编码、mask编码;

 

 

 最后贴上完整代码,便于读者深入理解:

整体代码:

  1 import json
  2 import math
  3 import torch
  4 import torchvision
  5 import torch.nn as nn
  6 import numpy as np
  7 from pdb import set_trace
  8 
  9 from torch.autograd import Variable
 10 
 11 
 12 def get_attn_pad_mask(seq_q, seq_k, pad_index):
 13     batch_size, len_q = seq_q.size()
 14     batch_size, len_k = seq_k.size()
 15     pad_attn_mask = seq_k.data.eq(pad_index).unsqueeze(1)
 16     pad_attn_mask = torch.as_tensor(pad_attn_mask, dtype=torch.int)
 17     return pad_attn_mask.expand(batch_size, len_q, len_k)
 18 
 19 
 20 def get_attn_subsequent_mask(seq):
 21     attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
 22     subsequent_mask = np.triu(np.ones(attn_shape), k=1)
 23     subsequent_mask = torch.from_numpy(subsequent_mask).int()
 24     return subsequent_mask
 25 
 26 
 27 class GELU(nn.Module):
 28 
 29     def forward(self, x):
 30         return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
 31 
 32 
 33 class PositionalEncoding(nn.Module):
 34     "Implement the PE function."
 35 
 36     def __init__(self, d_model, dropout, max_len=5000):  #
 37         super(PositionalEncoding, self).__init__()
 38         self.dropout = nn.Dropout(p=dropout)
 39 
 40         # Compute the positional encodings once in log space.
 41         pe = torch.zeros(max_len, d_model)
 42         position = torch.arange(0., max_len).unsqueeze(1)
 43         div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))  # 偶数列
 44         pe[:, 0::2] = torch.sin(position * div_term)
 45         pe[:, 1::2] = torch.cos(position * div_term)
 46         pe = pe.unsqueeze(0)
 47         self.register_buffer('pe', pe)  # 将变量pe保存到内存中,不计算梯度
 48 
 49     def forward(self, x):
 50         x = x + Variable(self.pe[:, :x.size(1)], requires_grad=False)  # torch.autograd.Variable 表示有梯度的张量变量
 51         return self.dropout(x)
 52 
 53 
 54 class ScaledDotProductAttention(nn.Module):
 55 
 56     def __init__(self, d_k, device):
 57         super(ScaledDotProductAttention, self).__init__()
 58         self.device = device
 59         self.d_k = d_k
 60 
 61     def forward(self, Q, K, V, attn_mask):
 62         scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(self.d_k)
 63         attn_mask = torch.as_tensor(attn_mask, dtype=torch.bool)
 64         attn_mask = attn_mask.to(self.device)
 65         scores.masked_fill_(attn_mask, -1e9)  # it is true give -1e9
 66         attn = nn.Softmax(dim=-1)(scores)
 67         context = torch.matmul(attn, V)
 68         return context, attn
 69 
 70 
 71 class MultiHeadAttention(nn.Module):
 72 
 73     def __init__(self, d_model, d_k, d_v, n_heads, device):
 74         super(MultiHeadAttention, self).__init__()
 75         self.WQ = nn.Linear(d_model, d_k * n_heads)  # 利用线性卷积
 76         self.WK = nn.Linear(d_model, d_k * n_heads)
 77         self.WV = nn.Linear(d_model, d_v * n_heads)
 78 
 79         self.linear = nn.Linear(n_heads * d_v, d_model)
 80 
 81         self.layer_norm = nn.LayerNorm(d_model)
 82         self.device = device
 83 
 84         self.d_model = d_model
 85         self.d_k = d_k
 86         self.d_v = d_v
 87         self.n_heads = n_heads
 88 
 89     def forward(self, Q, K, V, attn_mask):
 90         batch_size = Q.shape[0]
 91         q_s = self.WQ(Q).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)  # 线性卷积后再分组实现head功能
 92         k_s = self.WK(K).view(batch_size, -1, self.n_heads, self.d_k).transpose(1, 2)
 93         v_s = self.WV(V).view(batch_size, -1, self.n_heads, self.d_v).transpose(1, 2)
 94 
 95         attn_mask = attn_mask.unsqueeze(1).repeat(1, self.n_heads, 1, 1)  # 编导对应的头
 96         context, attn = ScaledDotProductAttention(d_k=self.d_k, device=self.device)(Q=q_s, K=k_s, V=v_s,
 97                                                                                     attn_mask=attn_mask)
 98         context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads * self.d_v)  # 将其还原
 99         output = self.linear(context)  # 通过线性又将其变成原来模样维度
100         return self.layer_norm(output + Q), attn  # 这里加Q 实际是对Q寻找
101 
102 
103 class PoswiseFeedForwardNet(nn.Module):
104 
105     def __init__(self, d_model, d_ff):
106         super(PoswiseFeedForwardNet, self).__init__()
107         self.l1 = nn.Linear(d_model, d_ff)
108         self.l2 = nn.Linear(d_ff, d_model)
109 
110         self.relu = GELU()
111         self.layer_norm = nn.LayerNorm(d_model)
112 
113     def forward(self, inputs):
114         residual = inputs
115         output = self.l1(inputs)  # 一层线性卷积
116         output = self.relu(output)
117         output = self.l2(output)  # 一层线性卷积
118         return self.layer_norm(output + residual)
119 
120 
121 class EncoderLayer(nn.Module):
122 
123     def __init__(self, d_model, d_ff, d_k, d_v, n_heads, device):
124         super(EncoderLayer, self).__init__()
125         self.enc_self_attn = MultiHeadAttention(d_model=d_model, d_k=d_k, d_v=d_v, n_heads=n_heads, device=device)
126         self.pos_ffn = PoswiseFeedForwardNet(d_model=d_model, d_ff=d_ff)
127 
128     def forward(self, enc_inputs, enc_self_attn_mask):
129         enc_outputs, attn = self.enc_self_attn(Q=enc_inputs, K=enc_inputs, V=enc_inputs, attn_mask=enc_self_attn_mask)
130         # X=Y 因此Q K V相等
131         enc_outputs = self.pos_ffn(enc_outputs)  #
132         return enc_outputs, attn
133 
134 
135 class Encoder(nn.Module):
136 
137     def __init__(self, vocab_size, d_model, d_ff, d_k, d_v, n_heads, n_layers, pad_index, device):
138         #                   4        128     256   64   64     8        4          0
139         super(Encoder, self).__init__()
140         self.device = device
141         self.pad_index = pad_index
142         self.src_emb = nn.Embedding(vocab_size, d_model)
143         # vocab_size:词典的大小尺寸,比如总共出现5000个词,那就输入5000。此时index为(0-4999) d_model:嵌入向量的维度,即用多少维来表示一个符号
144         self.pos_emb = PositionalEncoding(d_model=d_model, dropout=0)
145 
146         self.layers = []
147         for _ in range(n_layers):
148             encoder_layer = EncoderLayer(d_model=d_model, d_ff=d_ff, d_k=d_k, d_v=d_v, n_heads=n_heads, device=device)
149             self.layers.append(encoder_layer)
150         self.layers = nn.ModuleList(self.layers)
151 
152     def forward(self, x):
153         enc_outputs = self.src_emb(x)  # 词嵌入
154         enc_outputs = self.pos_emb(enc_outputs)  # pos+matx
155         enc_self_attn_mask = get_attn_pad_mask(x, x, self.pad_index)
156 
157         enc_self_attns = []
158         for layer in self.layers:
159             enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
160             enc_self_attns.append(enc_self_attn)
161 
162         enc_self_attns = torch.stack(enc_self_attns)
163         enc_self_attns = enc_self_attns.permute([1, 0, 2, 3, 4])
164         return enc_outputs, enc_self_attns
165 
166 
167 class DecoderLayer(nn.Module):
168 
169     def __init__(self, d_model, d_ff, d_k, d_v, n_heads, device):
170         super(DecoderLayer, self).__init__()
171         self.dec_self_attn = MultiHeadAttention(d_model=d_model, d_k=d_k, d_v=d_v, n_heads=n_heads, device=device)
172         self.dec_enc_attn = MultiHeadAttention(d_model=d_model, d_k=d_k, d_v=d_v, n_heads=n_heads, device=device)
173         self.pos_ffn = PoswiseFeedForwardNet(d_model=d_model, d_ff=d_ff)
174 
175     def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
176         dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
177         dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
178         dec_outputs = self.pos_ffn(dec_outputs)
179         return dec_outputs, dec_self_attn, dec_enc_attn
180 
181 
182 class Decoder(nn.Module):
183 
184     def __init__(self, vocab_size, d_model, d_ff, d_k, d_v, n_heads, n_layers, pad_index, device):
185         super(Decoder, self).__init__()
186         self.pad_index = pad_index
187         self.device = device
188         self.tgt_emb = nn.Embedding(vocab_size, d_model)
189         self.pos_emb = PositionalEncoding(d_model=d_model, dropout=0)
190         self.layers = []
191         for _ in range(n_layers):
192             decoder_layer = DecoderLayer(d_model=d_model, d_ff=d_ff, d_k=d_k, d_v=d_v, n_heads=n_heads, device=device)
193             self.layers.append(decoder_layer)
194         self.layers = nn.ModuleList(self.layers)
195 
196     def forward(self, dec_inputs, enc_inputs, enc_outputs):
197         dec_outputs = self.tgt_emb(dec_inputs)
198         dec_outputs = self.pos_emb(dec_outputs)
199 
200         dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs, self.pad_index)
201         dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)
202         dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)
203         dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs, self.pad_index)
204 
205         dec_self_attns, dec_enc_attns = [], []
206         for layer in self.layers:
207             dec_outputs, dec_self_attn, dec_enc_attn = layer(
208                 dec_inputs=dec_outputs,
209                 enc_outputs=enc_outputs,
210                 dec_self_attn_mask=dec_self_attn_mask,
211                 dec_enc_attn_mask=dec_enc_attn_mask)
212             dec_self_attns.append(dec_self_attn)
213             dec_enc_attns.append(dec_enc_attn)
214         dec_self_attns = torch.stack(dec_self_attns)
215         dec_enc_attns = torch.stack(dec_enc_attns)
216 
217         dec_self_attns = dec_self_attns.permute([1, 0, 2, 3, 4])
218         dec_enc_attns = dec_enc_attns.permute([1, 0, 2, 3, 4])
219 
220         return dec_outputs, dec_self_attns, dec_enc_attns
221 
222 
223 class MaskedDecoderLayer(nn.Module):
224 
225     def __init__(self, d_model, d_ff, d_k, d_v, n_heads, device):
226         super(MaskedDecoderLayer, self).__init__()
227         self.dec_self_attn = MultiHeadAttention(d_model=d_model, d_k=d_k, d_v=d_v, n_heads=n_heads, device=device)
228         self.pos_ffn = PoswiseFeedForwardNet(d_model=d_model, d_ff=d_ff)
229 
230     def forward(self, dec_inputs, dec_self_attn_mask):
231         dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
232         dec_outputs = self.pos_ffn(dec_outputs)
233         return dec_outputs, dec_self_attn
234 
235 
236 class MaskedDecoder(nn.Module):
237 
238     def __init__(self, vocab_size, d_model, d_ff, d_k,
239                  d_v, n_heads, n_layers, pad_index, device):
240         super(MaskedDecoder, self).__init__()
241         self.pad_index = pad_index
242         self.tgt_emb = nn.Embedding(vocab_size, d_model)
243         self.pos_emb = PositionalEncoding(d_model=d_model, dropout=0)
244 
245         self.layers = []
246         for _ in range(n_layers):
247             decoder_layer = MaskedDecoderLayer(
248                 d_model=d_model, d_ff=d_ff,
249                 d_k=d_k, d_v=d_v, n_heads=n_heads,
250                 device=device)
251             self.layers.append(decoder_layer)
252         self.layers = nn.ModuleList(self.layers)
253 
254     def forward(self, dec_inputs):
255         dec_outputs = self.tgt_emb(dec_inputs)
256         dec_outputs = self.pos_emb(dec_outputs)
257 
258         dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs, self.pad_index)
259         dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs)
260         dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)
261         dec_self_attns = []
262         for layer in self.layers:
263             dec_outputs, dec_self_attn = layer(
264                 dec_inputs=dec_outputs,
265                 dec_self_attn_mask=dec_self_attn_mask)
266             dec_self_attns.append(dec_self_attn)
267         dec_self_attns = torch.stack(dec_self_attns)
268         dec_self_attns = dec_self_attns.permute([1, 0, 2, 3, 4])
269         return dec_outputs, dec_self_attns
270 
271 
272 class BertModel(nn.Module):
273 
274     def __init__(self, vocab_size, d_model, d_ff, d_k, d_v, n_heads, n_layers, pad_index, device):
275         super(BertModel, self).__init__()
276         self.tok_embed = nn.Embedding(vocab_size, d_model)
277         self.pos_embed = PositionalEncoding(d_model=d_model, dropout=0)
278         self.seg_embed = nn.Embedding(2, d_model)
279 
280         self.layers = []
281         for _ in range(n_layers):
282             encoder_layer = EncoderLayer(
283                 d_model=d_model, d_ff=d_ff,
284                 d_k=d_k, d_v=d_v, n_heads=n_heads,
285                 device=device)
286             self.layers.append(encoder_layer)
287         self.layers = nn.ModuleList(self.layers)
288 
289         self.pad_index = pad_index
290 
291         self.fc = nn.Linear(d_model, d_model)
292         self.active1 = nn.Tanh()
293         self.classifier = nn.Linear(d_model, 2)
294 
295         self.linear = nn.Linear(d_model, d_model)
296         self.active2 = GELU()
297         self.norm = nn.LayerNorm(d_model)
298 
299         self.decoder = nn.Linear(d_model, vocab_size, bias=False)
300         self.decoder.weight = self.tok_embed.weight
301         self.decoder_bias = nn.Parameter(torch.zeros(vocab_size))
302 
303     def forward(self, input_ids, segment_ids, masked_pos):
304         output = self.tok_embed(input_ids) + self.seg_embed(segment_ids)
305         output = self.pos_embed(output)
306         enc_self_attn_mask = get_attn_pad_mask(input_ids, input_ids, self.pad_index)
307 
308         for layer in self.layers:
309             output, enc_self_attn = layer(output, enc_self_attn_mask)
310 
311         h_pooled = self.active1(self.fc(output[:, 0]))
312         logits_clsf = self.classifier(h_pooled)
313 
314         masked_pos = masked_pos[:, :, None].expand(-1, -1, output.size(-1))
315         h_masked = torch.gather(output, 1, masked_pos)
316         h_masked = self.norm(self.active2(self.linear(h_masked)))
317         logits_lm = self.decoder(h_masked) + self.decoder_bias
318 
319         return logits_lm, logits_clsf, output
320 
321 
322 class GPTModel(nn.Module):
323 
324     def __init__(self, vocab_size, d_model, d_ff,
325                  d_k, d_v, n_heads, n_layers, pad_index,
326                  device):
327         super(GPTModel, self).__init__()
328         self.decoder = MaskedDecoder(
329             vocab_size=vocab_size,
330             d_model=d_model, d_ff=d_ff,
331             d_k=d_k, d_v=d_v, n_heads=n_heads,
332             n_layers=n_layers, pad_index=pad_index,
333             device=device)
334         self.projection = nn.Linear(d_model, vocab_size, bias=False)
335 
336     def forward(self, dec_inputs):
337         dec_outputs, dec_self_attns = self.decoder(dec_inputs)
338         dec_logits = self.projection(dec_outputs)
339         return dec_logits, dec_self_attns
340 
341 
342 class Classifier(nn.Module):
343 
344     def __init__(self, vocab_size, d_model, d_ff,
345                  d_k, d_v, n_heads, n_layers,
346                  pad_index, device, num_classes):
347         super(Classifier, self).__init__()
348         self.encoder = Encoder(
349             vocab_size=vocab_size,
350             d_model=d_model, d_ff=d_ff,
351             d_k=d_k, d_v=d_v, n_heads=n_heads,
352             n_layers=n_layers, pad_index=pad_index,
353             device=device)
354         self.projection = nn.Linear(d_model, num_classes)
355 
356     def forward(self, enc_inputs):
357         enc_outputs, enc_self_attns = self.encoder(enc_inputs)
358         mean_enc_outputs = torch.mean(enc_outputs, dim=1)
359         logits = self.projection(mean_enc_outputs)
360         return logits, enc_self_attns
361 
362 
363 class Translation(nn.Module):
364 
365     def __init__(self, src_vocab_size, tgt_vocab_size, d_model,
366                  d_ff, d_k, d_v, n_heads, n_layers, src_pad_index,
367                  tgt_pad_index, device):
368         super(Translation, self).__init__()
369         self.encoder = Encoder(
370             vocab_size=src_vocab_size,  # 5
371             d_model=d_model, d_ff=d_ff,  # 128  256
372             d_k=d_k, d_v=d_v, n_heads=n_heads,  # 64 64  8
373             n_layers=n_layers, pad_index=src_pad_index,  # 4  0
374             device=device)
375         self.decoder = Decoder(
376             vocab_size=tgt_vocab_size,  # 5
377             d_model=d_model, d_ff=d_ff,  # 128  256
378             d_k=d_k, d_v=d_v, n_heads=n_heads,  # 64 64  8
379             n_layers=n_layers, pad_index=tgt_pad_index,  # 4  0
380             device=device)
381         self.projection = nn.Linear(d_model, tgt_vocab_size, bias=False)
382 
383     # def forward(self, enc_inputs, dec_inputs, decode_lengths):
384     #     enc_outputs, enc_self_attns = self.encoder(enc_inputs)
385     #     dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
386     #     dec_logits = self.projection(dec_outputs)
387     #     return dec_logits, enc_self_attns, dec_self_attns, dec_enc_attns, decode_lengths
388 
389     def forward(self, enc_inputs, dec_inputs):
390         enc_outputs, enc_self_attns = self.encoder(enc_inputs)
391         dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs)
392         dec_logits = self.projection(dec_outputs)
393         return dec_logits, enc_self_attns, dec_self_attns, dec_enc_attns
394 
395 
396 if __name__ == '__main__':
397     enc_input = [
398         [1, 3, 4, 1, 2, 3],
399         [1, 3, 4, 1, 2, 3],
400         [1, 3, 4, 1, 2, 3],
401         [1, 3, 4, 1, 2, 3]]
402     dec_input = [
403         [1, 0, 0, 0, 0, 0],
404         [1, 3, 0, 0, 0, 0],
405         [1, 3, 4, 0, 0, 0],
406         [1, 3, 4, 1, 0, 0]]
407     enc_input = torch.as_tensor(enc_input, dtype=torch.long).to(torch.device('cpu'))
408     dec_input = torch.as_tensor(dec_input, dtype=torch.long).to(torch.device('cpu'))
409     model = Translation(
410         src_vocab_size=5, tgt_vocab_size=5, d_model=128,
411         d_ff=256, d_k=64, d_v=64, n_heads=8, n_layers=4, src_pad_index=0,
412         tgt_pad_index=0, device=torch.device('cpu'))
413 
414     logits, _, _, _ = model(enc_input, dec_input)
415     print(logits)

 

posted @ 2021-12-11 00:41  tangjunjun  阅读(1572)  评论(0编辑  收藏  举报
https://rpc.cnblogs.com/metaweblog/tangjunjun