poj 3159 Candies 差分约束
设a[i] 为第i个小孩得到的糖果数,d[i] 为第i个小孩相对于第1个小孩的糖果数,即有:
d[i] = a[i] – a[1], d[1] = 0.
题目输入的A B c 有: a[B] – a[A] <= c 即有 (a[B] – a[1]) – (a[A] – a[1]) <= c , d[B] – d[A] <= c
题目是求最大值,就是求以1为源点的最短路。
注意:用spfa+队列会tlm, 要改用stack才过, 700ms。试用了Dijkstra+priority_queue,1400+ms擦过去了,不知是不是写得不够好.
#include <iostream>
#include <queue>
#include <stack>
using namespace std;
const int MAX = 30005;
const int INF = 1000000000;
const int N = 150005;
struct Node
{
int v;
int cost;
int next;
};
Node node[N];
int d[MAX];
int adj[MAX];
bool in_q[MAX];
int cnt[MAX];
int size;
int n, m;
void add_edge(int u, int v, int cost)
{
node[size].v = v;
node[size].cost = cost;
node[size].next = adj[u];
adj[u] = size++;
}
struct cmp
{
bool operator() (const int &a, const int &b)
{
return d[a] > d[b];
}
};
priority_queue<int, vector<int>, cmp> Q;
void Dijkstra()
{
for (int i = 0; i <= n; i++)
d[i] = INF;
Q.push(1);
d[1] = 0;
int u, v, w;
while (!Q.empty())
{
u = Q.top();
Q.pop();
for (int i = adj[u]; i != -1; i = node[i].next)
{
v = node[i].v;
w = node[i].cost;
if (d[v] > d[u] + w)
{
d[v] = d[u] + w;
Q.push(v);
}
}
}
}
void spfa()
{
memset(in_q, false, sizeof(in_q));
for (int i = 1; i <= n; i++)
d[i] = INF;
stack<int> S;
d[1] = 0;
S.push(1);
in_q[1] = true;
int u, v, w;
while (!S.empty())
{
u = S.top();
S.pop();
in_q[u] = false;
for (int i = adj[u]; i != -1; i = node[i].next)
{
v = node[i].v;
w = node[i].cost;
if (d[v] > d[u] + w)
{
d[v] = d[u] + w;
if (!in_q[v])
{
in_q[v] = true;
S.push(v);
}
}
}
}
}
int main()
{
int a, b, w;
scanf("%d%d", &n, &m);
for (int i = 0; i <= n; i++)
adj[i] = -1;
for (int i = 0; i < m; i++)
{
scanf("%d%d%d", &a, &b, &w);
add_edge(a, b, w);
}
Dijkstra();
printf("%d\n", d[n]);
return 0;
}
浙公网安备 33010602011771号