2024.12.5

机器学习大作业

课程名称  机器学习B                 成绩            

班级                姓名               学号            

名称:混凝土承重等级预测

一、任务背景

在土木工程中,混凝土是构筑建筑物最基本的材料。混凝土可承受的强度与其寿命、制造所使用的材料、测试时的温度等因素息息相关。混凝土的制造过程十分复杂,涉及水泥、熔炉产出的煤渣和灰烬、水、强度塑化剂、粗聚合剂、细聚合剂等多种化工原料。我们用一个压力达2000kN的液压测试机采集混凝土承重能力的指标,对混凝土方块或圆柱体进行压力测试。这个测试是破坏性的,并且可能会持续很长时间,因此如果我们能够脱离实际测试,直接使用制作原料对其承重能力进行预测,则将具备非常高的商业价值。图1 显示了一次承重能力测试。在本次研究中,我们希望能够建立出一个以混凝土制作配方为输入数据,能够预测其承重能力的模型。
   
   
    
    
    
    
    
    
    
    
    
    
    
    
   
   
   
  
   
  
图 1  承重能力测试

二、任务数据

为了通过混凝土配方预测其成品的承重强度,我们向数据集中采集了大量的样本数据。每个样本都包含8个特征值作为输入数据,其输出值就是指标承重强度。
本数据集包含了如下指标(按照数据集中特征值的顺序进行排列),其中输入指标包括以下内容。
(1)Cement 单位:kg /m3。
(2)Blast Furnace Slag 单位:kg /m3。
(3)Fly Ash 单位:kg /m3。
(4)Water 单位:kg /m3。
(5)Superplasticizer 单位:kg /m3。
(6)Coarse Aggregate 单位:kg /m3。
(7)Fine Aggregate 单位:kg /m3。
(8)Age 单位:kg /m3。
输出指标包括Concrete compressive strength 单位:MPa。
每个样本有8个混凝土原料配方作为输入特征值(前8 列)及1个目标值(最后一列,承重强度)

三、任描述务

1.根据样本的承重强度对样本标签进行离散化处理,将连续承重强度转换为离散承重等级,然后实现分类任务。输出指标离散化需要考虑两方面因素:一是调研文献,分析各等级混凝土承重强度;二是不同的承重等级数目情况下,模型的预测效果,对比选出预测结果最好的离散化方式。(20分)
2.导入数据集,返回当前数据的统计信息并进行阐述说明,以前6行为例进行结果展示。(10分)
3. 对混凝土数据集进行可视化处理,生成各特征之间关系的矩阵图。(10分)
4. 数据预处理,并将原始数据集划分为训练集和测试集,选用合适的机器学习算法对混凝土数据集进行拟合。(20分)
5. 采用交叉验证,估计超参数,分析超参数对预测结果的影响。(20分)
6. 预测结果分析及可视化,绘制混淆矩阵,分析不同承重等级混凝土的查全率和查准率。(20分)

四、结果及分析

简明结果
精度
 
查准率
 
查全率
 
F1值
 
详细方案和结果分析
解决方案
【包括预测分析的设计思路的具体实现过程或实现步骤】
 
 
 
 
 
 
 
 
 
结果展示
【包括每个任务点结果的展示】
1.    根据样本的承重强度对样本标签进行离散化处理,将连续承重强度转换为离散承重等级。至少给出3种输出指标离散化的方案,并阐述理由。在后续任务中分别进行模型训练,并在结果展示4、5和结果分析中,从精度,查准率,查全率,FI值等多个角度进行分析,最终选出预测结果最好的离散化方式。
 
 
2.    返回前六条数据结果(结果截图,并标明图1. 数据展示),并对数据集中的概要信息进行描述。
 
 
3.    数据可视化结果(标明图2. 数据可视化)
 
 
4.    混淆矩阵展示(标明图3. 分类混淆矩阵)
 
 
5.    精度,查准率,查全率,FI值的结果截图(标明图4. 分类结果)
 
 
结果分析
【包括预测结果分析(包括对超参影响、精度、查准率、查全率、F1值的分析)、可能存在的问题、可提升的改进思路等】
 
 
 
 
 
 
 
 
                 

 

 

posted @ 2024-12-25 10:29  cvjj  阅读(8)  评论(0)    收藏  举报