密码工程-扩展欧几里得算法
任务详情
0. 在openEuler(推荐)或Ubuntu或Windows(不推荐)中完成下面任务 1. 参考《密码工程》p112伪代码实现ExtendedGCD(int a, int b, int *k, int *u, int *v)算法(5 2. 在测试代码中计算74模167的逆。(5 3. 自己设计至少两个测试代码。5 4. 提交代码和运行结果截图
代码实现
#include <stdio.h>
//这里用了int类型,所支持的整数范围较小且本程序仅支持非负整数,可能缺乏实际用途,仅供演示。
struct EX_GCD { //s,t是裴蜀等式中的系数,gcd是a,b的最大公约数
int s;
int t;
int gcd;
};
struct EX_GCD extended_euclidean(int a, int b) {
struct EX_GCD ex_gcd;
if (b == 0) { //b等于0时直接结束求解
ex_gcd.s = 1;
ex_gcd.t = 0;
ex_gcd.gcd = 0;
return ex_gcd;
}
int old_r = a, r = b;
int old_s = 1, s = 0;
int old_t = 0, t = 1;
while (r != 0) { //按扩展欧几里得算法进行循环
int q = old_r / r;
int temp = old_r;
old_r = r;
r = temp - q * r;
temp = old_s;
old_s = s;
s = temp - q * s;
temp = old_t;
old_t = t;
t = temp - q * t;
}
ex_gcd.s = old_s;
ex_gcd.t = old_t;
ex_gcd.gcd = old_r;
return ex_gcd;
}
int main(void) {
int a, b;
printf("Please input two integers divided by a space.\n");
scanf("%d%d", &a, &b);
if (a < b) { //如果a小于b,则交换a和b以便后续求解
int temp = a;
a = b;
b = temp;
}
struct EX_GCD solution = extended_euclidean(a, b);
printf("%d*%d+%d*%d=%d\n", solution.s, a, solution.t, b, solution.gcd);
printf("所以%d模%d的逆=%d\n", a,b,solution.t);
return 0;
}
运行结果:

代码实现2
#include<stdio.h> #include<assert.h> int main() { unsigned int a,b; int s,t,m,gcd; int ExtendedGCD(unsigned int a,unsigned int b,int *k,int *u,int *v); printf("input two number:"); while(scanf("%d%d",&a,&b)!=EOF) { assert(a>=0); assert(b>=0); gcd=ExtendedGCD(a,b,&s,&t,&m); printf("%d %d\n",s,t); printf("gcd = 1\n",b); printf("input two number:"); } return 0; } int ExtendedGCD(unsigned int a,unsigned int b,int *k,int *u,int *v)//扩展欧几里得算法; { if(b==0) { *k=1; *u=0; return a; } int i=ExtendedGCD(b,a%b,k,u,u); int t=*k; *k=*u; *u=t-a/b*(*u); return i; }
运行结果

浙公网安备 33010602011771号