第六次作业:二叉树

| 这个作业属于哪个课程 | https://edu.cnblogs.com/campus/qdu/DS2020 |
| ---- | ---- | ---- |
| 这个作业要求在哪里 | https://edu.cnblogs.com/campus/qdu/DS2020/homework/11430 |
| 这个作业的目标 | 掌握二叉树的基本特性,掌握二叉树的先序、中序、后序的递归遍历算法,理解二叉树的先序、中序、后序的非递归遍历算法,通过求二叉树的深度、叶子结点数和层序遍历等算法,理解二叉树的基本特性 |
| 学号 | 2018204195 |

一、实验目的
1、掌握二叉树的基本特性
2、掌握二叉树的先序、中序、后序的递归遍历算法
3、理解二叉树的先序、中序、后序的非递归遍历算法
4、通过求二叉树的深度、叶子结点数和层序遍历等算法,理解二叉树的基本特性

二、实验预习
说明以下概念:
1、二叉树:
二叉树(Binary tree)是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。二叉树特点是每个结点最多只能有两棵子树,且有左右之分,二叉树作为树形结构的一种,是每个节点最多有两个子树的树结构。
二叉树是n个有限元素的集合,该集合或者为空、或者由一个称为根(root)的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成,是有序树。当集合为空时,称该二叉树为空二叉树。在二叉树中,一个元素也称作一个结点。
2、递归遍历:
由于二叉树所具有的递归性质,一棵非空的二叉树可以看作是由根节点、左子树和右子树3部分构成,因为若能依次遍历这3部分的信息,也就遍历了整个二叉树。沿着某条搜索路线,依次对树(或图)中每个节点均做一次访问,递归作为遍历的一种方法,是利用计算机的堆栈的概念,一般通过调用相同的函数来实现,函数中一般会设置终止的语句。
3、 非递归遍历:
不采用递归的方式对二叉树进行遍历,要采用栈去模拟实现。
4、层序遍历:
层序遍历:进行层序遍历时,对某一层的节点访问完后,再按照他们的访问次序对各个节点的左孩子和右孩子顺序访问,这样一层一层进行,先访问的节点其左右孩子也要先访问,这正好符合队列的操作特性。

三、实验内容和要求
1、阅读并运行下面程序,根据输入写出运行结果,并画出二叉树的形态。
代码:

#include<malloc.h>
#include<iostream>
#include<conio.h>
#define MAX 20
typedef struct BTNode{       /*节点结构声明*/
	char data ;               /*节点数据*/
	struct BTNode *lchild;
	struct BTNode *rchild ;  /*指针*/
}*BiTree;

void createBiTree(BiTree *t){ /* 先序遍历创建二叉树*/
	char s;
	BiTree q;
	printf("\nplease input data:(exit for #)");
	s=getche();
	if(s=='#'){*t=NULL; return;}
	q=(BiTree)malloc(sizeof(struct BTNode));
	if(q==NULL){printf("Memory alloc failure!"); exit(0);}
	q->data=s;
	*t=q;
	createBiTree(&q->lchild); /*递归建立左子树*/
	createBiTree(&q->rchild); /*递归建立右子树*/
}

void PreOrder(BiTree p){  /* 先序遍历二叉树*/
    if ( p!= NULL ) {
       	printf("%c", p->data);
       	PreOrder( p->lchild ) ;
       	PreOrder( p->rchild) ;
    }
}
void InOrder(BiTree p){  /* 中序遍历二叉树*/
    if( p!= NULL ) {
 	 InOrder( p->lchild ) ;
   	 printf("%c", p->data);
   	 InOrder( p->rchild) ;
    }
}
void PostOrder(BiTree p){  /* 后序遍历二叉树*/
   if ( p!= NULL ) {
    	PostOrder( p->lchild ) ;
       	PostOrder( p->rchild) ;
       	printf("%c", p->data);
    }
}
void Preorder_n(BiTree p){ /*先序遍历的非递归算法*/
    BiTree stack[MAX],q;
    int top=0,i;
    for(i=0;i<MAX;i++) stack[i]=NULL;/*初始化栈*/
    q=p;
    while(q!=NULL){
        printf("%c",q->data);
        if(q->rchild!=NULL) stack[top++]=q->rchild;
        if(q->lchild!=NULL) q=q->lchild;
        else
            if(top>0) q=stack[--top];
            else q=NULL;
    }
}
void release(BiTree t){ /*释放二叉树空间*/
  	if(t!=NULL){
    	release(t->lchild);
    	release(t->rchild);
    	free(t);
  	}
}
int main(){
    BiTree t=NULL;
    createBiTree(&t);
    printf("\n\nPreOrder the tree is:");
    PreOrder(t);
    printf("\n\nInOrder the tree is:");
    InOrder(t);
    printf("\n\nPostOrder the tree is:");
    PostOrder(t);
    printf("\n\n先序遍历序列(非递归):");
    Preorder_n(t);
    release(t);
    return 0;
}

运行结果:

二叉树形态:

2、在上题中补充求二叉树中求结点总数算法(提示:可在某种遍历过程中统计遍历的结点数),并在主函数中补充相应的调用验证正确性。
算法代码:

int j=0;
	BiTree stack[MAX],q;
	int top=0,i;
	for(i=0; i<MAX; i++) stack[i]=NULL; /*初始化栈*/
	q=p;
	while(q!=NULL) {
		j++;
		if(q->rchild!=NULL) stack[top++]=q->rchild;
		if(q->lchild!=NULL) q=q->lchild;
		else
			if(top>0) q=stack[--top];
			else q=NULL;
	}
    return j;
}

运行结果:

3、在上题中补充求二叉树中求叶子结点总数算法(提示:可在某种遍历过程中统计遍历的叶子结点数),并在主函数中补充相应的调用验证正确性。
算法代码:

int LeafNodes(BiTree p) {
	int num1=0 ,num2=0;
	if(p==NULL)
	return 0;
	else if(p->lchild==NULL&&p->rchild==NULL)
	return 1;
	else{ 
		num1=LeafNodes(p->lchild) ;
		num2=LeafNodes(p->rchild) ;
 		return (num1+num2);
    }
}

运行结果:

4、在上题中补充求二叉树深度算法,并在主函数中补充相应的调用验证正确性。
算法代码:

int BTNodeDepth(BiTree p) {
	int lchilddep,rchilddep;
	if(p==NULL)
		return 0;
	else {
		lchilddep=BTNodeDepth(p->lchild);
		rchilddep=BTNodeDepth(p->rchild);
		return(lchilddep>rchilddep)?(lchilddep+1):(rchilddep+1);
	}
}

运行结果:

四、实验小结
掌握了二叉树的基本特性,学习了二叉树的先序、中序、后序的钉钉递归遍历算法,通过求二叉树的深度、叶子结点数和层序遍历等算法,理解了二叉树的基本特性,对c语言的学习更进一步。

posted @ 2020-11-05 21:36  御清绝S  阅读(161)  评论(0)    收藏  举报