• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
井_中窥月
万物美好,我在中央
博客园    首页    新随笔    联系   管理    订阅  订阅
H-The Cow Lineup(POJ 1989)
The Cow Lineup
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5367   Accepted: 3196

Description

Farmer John's N cows (1 <= N <= 100,000) are lined up in a row.Each cow is labeled with a number in the range 1...K (1 <= K <=10,000) identifying her breed. For example, a line of 14 cows might have these breeds: 
    1 5 3 2 5 1 3 4 4 2 5 1 2 3

Farmer John's acute mathematical mind notices all sorts of properties of number sequences like that above. For instance, he notices that the sequence 3 4 1 3 is a subsequence (not necessarily contiguous) of the sequence of breed IDs above. FJ is curious what is the length of the shortest possible sequence he can construct out of numbers in the range 1..K that is NOT a subsequence of the breed IDs of his cows. Help him solve this problem. 

Input

* Line 1: Two integers, N and K 

* Lines 2..N+1: Each line contains a single integer that is the breed ID of a cow. Line 2 describes cow 1; line 3 describes cow 2; and so on. 

Output

* Line 1: The length of the shortest sequence that is not a subsequence of the input 

Sample Input

14 5
1
5
3
2
5
1
3
4
4
2
5
1
2
3

Sample Output

3

Hint

All the single digit 'sequences' appear. Each of the 25 two digit sequences also appears. Of the three digit sequences, the sequence 2, 2, 4 does not appear. 

Source

USACO 2004 U S Open
 
一开始还以为是dp,我都没敢下手啊。。。果然是比较笨。
比较简单的贪心。思路如下:
      因为若是序列包含长度为l的子序列,必然有序列可以划分为l段,每段都包含k个互不相同的数字,则最短的不被包含的子序列长度为l+1。
#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < (b); i++)
#define MAXN 100005

int num[MAXN];
bool vis[10005];
int main()
{
    int n, k;
    while(~scanf("%d%d", &n, &k))
    {
        repu(i, 0, n) scanf("%d", &num[i]);
        int len = 0, c = 0;
        memset(vis, false, sizeof(vis));
        repu(i, 0, n) {
          if(vis[num[i]]) ;
          else vis[num[i]] = true, c++;
          if(c == k) {
                len++, c = 0;
                 memset(vis, false, sizeof(vis));
          }
        }
        printf("%d\n", len + 1);
    }
    return 0;
}
View Code

 

posted on 2015-05-04 18:31  井_中窥月  阅读(233)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3