• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
井_中窥月
万物美好,我在中央
博客园    首页    新随笔    联系   管理    订阅  订阅
Kids and Prizes(SGU 495)

495. Kids and Prizes

Time limit per test: 0.25 second(s)
Memory limit: 262144 kilobytes
input: standard
output: standard




ICPC (International Cardboard Producing Company) is in the business of producing cardboard boxes. Recently the company organized a contest for kids for the best design of a cardboard box and selected M winners. There are Nprizes for the winners, each one carefully packed in a cardboard box (made by the ICPC, of course). The awarding process will be as follows:

  • All the boxes with prizes will be stored in a separate room.
  • The winners will enter the room, one at a time.
  • Each winner selects one of the boxes.
  • The selected box is opened by a representative of the organizing committee.
  • If the box contains a prize, the winner takes it.
  • If the box is empty (because the same box has already been selected by one or more previous winners), the winner will instead get a certificate printed on a sheet of excellent cardboard (made by ICPC, of course).
  • Whether there is a prize or not, the box is re-sealed and returned to the room.

The management of the company would like to know how many prizes will be given by the above process. It is assumed that each winner picks a box at random and that all boxes are equally likely to be picked. Compute the mathematical expectation of the number of prizes given (the certificates are not counted as prizes, of course).

Input

The first and only line of the input file contains the values of N and M ().

Output

The first and only line of the output file should contain a single real number: the expected number of prizes given out. The answer is accepted as correct if either the absolute or the relative error is less than or equal to 10-9.

Example(s)
sample input
sample output
5 7
3.951424

 

sample input
sample output
4 3
2.3125

 两种方法:

1.设A = “所有奖品都不被取到”, P(A) = ((n - 1) / n) ^ m;

E(A) =  n * P(A);

E(!A) = n - E(A);

2.P(i) 表示第i个人拿到奖品的概率;

P(i) = P(i - 1) * (1 - P(i - 1)) + P(i - 1) * (P(i - 1) - 1 / n);

E = ∑(P(i) * 1);

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN 100005

double d[MAXN];
int main()
{
    double n, m;
    while(~scanf("%lf%lf", &n, &m))
    {
        d[1] = 1.0;
        for(int i = 2; i <= (int)m; i++)
            d[i] = (1.0 - d[i - 1]) * d[i - 1] + d[i - 1] * (d[i - 1] - 1.0 / n);

        double e = 0.0;
        for(int i = 1; i <= (int)m; i++) e += d[i];
        printf("%.10lf\n", e);
    }

    return 0;
}
View Code
#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN 1005


int main()
{
    double n, m;
    while(~scanf("%lf%lf", &n, &m))
        printf("%.9lf\n", n - n * pow((n - 1) / n, m));
    return 0;
}
View Code

 

posted on 2015-04-14 17:49  井_中窥月  阅读(256)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3