• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
井_中窥月
万物美好,我在中央
博客园    首页    新随笔    联系   管理    订阅  订阅
快速幂(整数 + 矩阵)

一、整数m ^ n  % k 的快速幂:

ll quickpow(ll m, ll n , ll k){
    ll   ans = 1;
    while(n){
        if(n & 1)//如果n是奇数
            ans = (ans * m) % k;
        n = n >> 1;//位运算“右移1类似除2”
        m = (m * m) % k;
    }
    return ans;
}
View Code

二、矩阵 M ^ n % mod 的快速幂:

struct Matrix
{
    ll m[MAXN][MAXN]; //二维数组存放矩阵
    Matrix(ll num[MAXN][MAXN])
    {
        for(int i = 0 ; i < MAXN ; i++)
            for(int j = 0 ; j < MAXN ; j++)
                m[i][j] = num[i][j];
    }  //对数组的初始化
    Matrix() {}
};

Matrix operator * (Matrix &m1, Matrix &m2)
{
    int i, j, k;
    Matrix temp;
    for (i = 0; i < MAXN; i++)
    {
        for (j = 0; j < MAXN; j++)
        {
            temp.m[i][j] = 0;
            for(k = 0 ; k < MAXN ; k++)
                temp.m[i][j] += (m1.m[i][k] * m2.m[k][j]) % mod;
            temp.m[i][j] %= mod; //注意每一步都进行取模
        }
    }
    return temp;
}

Matrix quickpow(Matrix &M , ll n, ll mod)
{
    Matrix tempans(base);  //初始化为单位矩阵
    while(n)
    {
        if(n & 1)
            tempans = tempans * M; //已经重载了*
        n = n >> 1;
        M = M * M;
    } //快速幂(类似整数)
    return tempans;
}
  
View Code

 

posted on 2015-04-08 22:50  井_中窥月  阅读(180)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3