【ATT】Scramble String
Q:
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr" and swap its two children, it produces a scrambled string "rgeat".
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat" is a scrambled string of "great".
Similarly, if we continue to swap the children of nodes "eat" and "at", it produces a scrambled string "rgtae".
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae" is a scrambled string of "great".
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
A: 三维动态规划。
最初的想法是用递归去做,发现有很多重叠的子问题。因此改用动态规划去存储中间状态。
dp[i][j][k]:初始位置为i,长度为k的s1子串和初始位置为j,长度为k的s2子串是否scramble的。
边界条件是dp[i][j][1].
k>=2时,
计算dp[i][j][k]时,对于任意的l<k,>0,满足子串s1[i~,i+l-1]和s2[j,j+l-1]scramble,同时剩余的两部分也scramble;或者s1[i+k-l,i+k-1]和s2[j,j+l-1]scramble,同时剩余的两部分也scramble。!!注意,不要只考虑一种情况。
复杂度O(n^4).
bool isScramble(string s1, string s2) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(s1.empty()&&s2.empty())
return true;
int n = s1.size();
vector<vector<vector<bool>>> dp(n,vector<vector<bool>> (n,vector<bool>(n+1,false)) );
int i,j,k,l;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
dp[i][j][1] = s1[i]==s2[j];
for(k=2;k<=n;k++)
{
for(i=0;i<=n-k;i++)
{
for(j=0;j<=n-k;j++)
{
for(l=1;l<k;l++)
{
dp[i][j][k] = (dp[i][j][l]&&dp[i+l][j+l][k-l])||(dp[i][j+k-l][l]&&dp[i+l][j][k-l]);
if(dp[i][j][k])
break;
}
}
}
}
return dp[0][0][n];
}
浙公网安备 33010602011771号