package com.test.tree;
/**
* 带有平衡条件的二叉查找树
* */
public class AVLBinarySearchTree<T extends Comparable<? super T>> {
/*内部类,定义二叉树中的节点结构*/
private static class TreeNode<T>{
private T data; //节点的值
private TreeNode<T> lt; //节点左子树
private TreeNode<T> rt; //节点右子树
private int height; //用来记录节点的高度,进行单旋转或双旋转
public TreeNode(T data) {
this(data, null, null);
}
public TreeNode(T data, TreeNode<T> lt, TreeNode<T> rt) {
this.data = data;
this.lt = lt;
this.rt = rt;
this.height = 0;
}
public T getData() {
return data;
}
public void setData(T data) {
this.data = data;
}
public TreeNode<T> getLt() {
return lt;
}
public void setLt(TreeNode<T> lt) {
this.lt = lt;
}
public TreeNode<T> getRt() {
return rt;
}
public void setRt(TreeNode<T> rt) {
this.rt = rt;
}
public int getHeight() {
return height;
}
public void setHeight(int height) {
this.height = height;
}
}
/**
* 计算节点的高度
* @param t 输入子树
* @return 返回树的高度
*/
public int height(TreeNode<T> t){
return t==null ? -1 : t.height;
}
/**
* 给树中添加节点
* @param data 要插入的节点值
* @param t 要插入的子树
* @return 插入后形成的新的树
*/
public TreeNode<T> insert(T data, TreeNode<T> t){
if(t == null){
//树为空
return new TreeNode<T>(data, null ,null);
}
int compareReslt = compare(data, t.data);
if(compareReslt < 0){
//插入的数小于节点数,放入左子树中
t.lt = insert(data, t.lt) ; //递归插入左子树
//插入后检查当前节点的左右子树是否平衡
if(height(t.lt)-height(t.rt) == 2){
if(compare(data, t.lt.data) < 0){
t = rotateWithLeftChild(t); //单旋转
}else if(compare(data, t.lt.data) > 0){
t = doubleWithLeftChild(t); //双旋转
}
}
}else if(compareReslt > 0){
//插入的数大于节点数,放入右子树中
t.rt = insert(data, t.rt) ; //递归插入左子树
//插入后检查当前节点的左右子树是否平衡
if(height(t.rt)-height(t.lt) == 2){
if(compare(data, t.rt.data) > 0){
t = rotateWithRightChild(t); //单旋转
}else if(compare(data, t.rt.data) > 0){
t = doubleWithRightChild(t); //双旋转
}
}
}
t.height = Math.max(height(t.lt), height(t.rt)) + 1;
return t;
}
private TreeNode<T> rotateWithRightChild(TreeNode<T> k2) {
// TODO Auto-generated method stub
TreeNode<T> k1 = k2.rt;
k2.rt = k1.lt; //左子树的右节点介于左子树根节点和根节点之间,赋值给根节点的左子树
k1.lt = k2; //将根节点赋值给左节点的右节点
k2.height = Math.max(height(k2.lt), height(k2.rt)) + 1;
k1.height = Math.max(height(k1.rt), k2.height) + 1;
return k1;
}
private TreeNode<T> doubleWithRightChild(TreeNode<T> k3) {
// TODO Auto-generated method stub
k3.rt = rotateWithLeftChild(k3.rt);
return rotateWithRightChild(k3);
}
/**
* 单旋转
* @param t
* @return
*/
private TreeNode<T> rotateWithLeftChild(TreeNode<T> k2) {
// TODO Auto-generated method stub
TreeNode<T> k1 = k2.lt; //左子树的根节点赋给K1
k2.lt = k1.rt; //左子树的右节点介于左子树根节点和根节点之间,赋值给根节点的左子树
k1.rt = k2; //将根节点赋值给左节点的右节点
k2.height = Math.max(height(k2.lt), height(k2.rt)) + 1;
k1.height = Math.max(height(k1.lt), k2.height) + 1;
return k1;
}
/**
* 双旋转
* @param t
* @return
*/
private TreeNode<T> doubleWithLeftChild(TreeNode<T> k3) {
// TODO Auto-generated method stub
k3.lt = rotateWithRightChild(k3.lt);
return rotateWithLeftChild(k3);
}
/**
* 比较两个值是否相等
* @param data1
* @param data2
* @return
*/
public int compare(T data1, T data2){
return data1.compareTo(data2);
}
/*中序遍历*/
public void printTree(TreeNode<T> t){
if(t != null){
printTree(t.lt);
System.out.print(t.data+"、");
printTree(t.rt);
}
}
public static void main(String[] args) {
AVLBinarySearchTree<Integer> aVLBinarySearchTree = new AVLBinarySearchTree<Integer>();
TreeNode<Integer> node = new TreeNode<Integer>(8);
node = aVLBinarySearchTree.insert(6, node);
node = aVLBinarySearchTree.insert(16, node);
node = aVLBinarySearchTree.insert(13, node);
node = aVLBinarySearchTree.insert(19, node);
node = aVLBinarySearchTree.insert(7, node);
node = aVLBinarySearchTree.insert(21, node);
node = aVLBinarySearchTree.insert(23, node);
aVLBinarySearchTree.printTree(node.lt);
aVLBinarySearchTree.printTree(node.rt);
}
}