一致性hash

还有一篇理论讲解,很到位,提到虚拟节点的应用:

https://www.cnblogs.com/lpfuture/p/5796398.html

本文转载链接:https://blog.csdn.net/gerryke/article/details/53939212

一致性哈希算法,作为分布式计算的数据分配参考,比传统的取模,划段都好很多。

在电信计费中,可以作为多台消息接口机和在线计费主机的分配算法,根据session_id来分配,这样当计费主机动态伸缩的时候,因为session_id缓存缺失而需要放通的会话,会明显减少。

传统的取模方式

例如10条数据,3个节点,如果按照取模的方式,那就是

node a: 0,3,6,9

node b: 1,4,7

node c: 2,5,8

当增加一个节点的时候,数据分布就变更为

node a:0,4,8

node b:1,5,9

node c: 2,6

node d: 3,7

总结:数据3,4,5,6,7,8,9在增加节点的时候,都需要做搬迁,成本太高

一致性哈希方式

最关键的区别就是,对节点和数据,都做一次哈希运算,然后比较节点和数据的哈希值,数据取和节点最相近的节点做为存放节点。这样就保证当节点增加或者减少的时候,影响的数据最少。

还是拿刚刚的例子,(用简单的字符串的ascii码做哈希key):

十条数据,算出各自的哈希值

0:192

1:196

2:200

3:204

4:208

5:212

6:216

7:220

8:224

9:228

有三个节点,算出各自的哈希值

node a: 203

node g: 209

node z: 228

这个时候比较两者的哈希值,如果大于228,就归到前面的203,相当于整个哈希值就是一个环,对应的映射结果:

node a: 0,1,2

node g: 3,4

node z: 5,6,7,8,9

这个时候加入node n, 就可以算出node n的哈希值:

node n: 216

这个时候对应的数据就会做迁移:

node a: 0,1,2

node g: 3,4

node n: 5,6

node z: 7,8,9

这个时候只有5和6需要做迁移

另外,这个时候如果只算出三个哈希值,那再跟数据的哈希值比较的时候,很容易分得不均衡,因此就引入了虚拟节点的概念,通过把三个节点加上ID后缀等方式,每个节点算出n个哈希值,均匀的放在哈希环上,这样对于数据算出的哈希值,能够比较散列的分布(详见下面代码中的replica)

通过这种算法做数据分布,在增减节点的时候,可以大大减少数据的迁移规模。

下面转载的哈希代码,已经将gen_key改成上述描述的用字符串ascii相加的方式,便于测试验证。

import md5  
class HashRing(object):  
    def __init__(self, nodes=None, replicas=3):  
        """Manages a hash ring. 
        `nodes` is a list of objects that have a proper __str__ representation. 
        `replicas` indicates how many virtual points should be used pr. node, 
        replicas are required to improve the distribution. 
        """  
        self.replicas = replicas  
        self.ring = dict()  
        self._sorted_keys = []  
        if nodes:  
            for node in nodes:  
                self.add_node(node)  
    def add_node(self, node):  
        """Adds a `node` to the hash ring (including a number of replicas). 
        """  
        for i in xrange(0, self.replicas):  
            key = self.gen_key('%s:%s' % (node, i))  
            print "node %s-%s key is %ld" % (node, i, key)  
            self.ring[key] = node  
            self._sorted_keys.append(key)  
        self._sorted_keys.sort()  
    def remove_node(self, node):  
        """Removes `node` from the hash ring and its replicas. 
        """  
        for i in xrange(0, self.replicas):  
            key = self.gen_key('%s:%s' % (node, i))  
            del self.ring[key]  
            self._sorted_keys.remove(key)  
    def get_node(self, string_key):  
        """Given a string key a corresponding node in the hash ring is returned. 
        If the hash ring is empty, `None` is returned. 
        """  
        return self.get_node_pos(string_key)[0]  
    def get_node_pos(self, string_key):  
        """Given a string key a corresponding node in the hash ring is returned 
        along with it's position in the ring. 
        If the hash ring is empty, (`None`, `None`) is returned. 
        """  
        if not self.ring:  
            return None, None  
        key = self.gen_key(string_key)  
        nodes = self._sorted_keys  
        for i in xrange(0, len(nodes)):  
            node = nodes[i]  
            if key <= node:  
                print "string_key %s key %ld" % (string_key, key)   
                print "get node %s-%d " % (self.ring[node], i)  
                return self.ring[node], i  
        return self.ring[nodes[0]], 0  
    def print_ring(self):  
        if not self.ring:  
            return None, None  
        nodes = self._sorted_keys  
        for i in xrange(0, len(nodes)):  
            node = nodes[i]  
            print "ring slot %d is node %s, hash vale is %s" % (i, self.ring[node], node)  
    def get_nodes(self, string_key):  
        """Given a string key it returns the nodes as a generator that can hold the key. 
        The generator is never ending and iterates through the ring 
        starting at the correct position. 
        """  
        if not self.ring:  
            yield None, None  
        node, pos = self.get_node_pos(string_key)  
        for key in self._sorted_keys[pos:]:  
            yield self.ring[key]  
        while True:  
            for key in self._sorted_keys:  
                yield self.ring[key]  
    def gen_key(self, key):  
        """Given a string key it returns a long value, 
        this long value represents a place on the hash ring. 
        md5 is currently used because it mixes well. 
        """  
        m = md5.new()  
        m.update(key)  
        return long(m.hexdigest(), 16)  
        """ 
        hash = 0 
        for i in xrange(0, len(key)): 
            hash += ord(key[i])  
        return hash 
        """  
  
  
memcache_servers = ['a',  
                   'g',  
                    'z']  
ring = HashRing(memcache_servers,1)  
ring.print_ring()  
server = ring.get_node('0000')  
server = ring.get_node('1111')  
server = ring.get_node('2222')  
server = ring.get_node('3333')  
server = ring.get_node('4444')  
server = ring.get_node('5555')  
server = ring.get_node('6666')  
server = ring.get_node('7777')  
server = ring.get_node('8888')  
server = ring.get_node('9999')  
  
print '----------------------------------------------------------'  
  
memcache_servers = ['a',  
                   'g',  
                   'n',  
                    'z']  
ring = HashRing(memcache_servers,1)  
ring.print_ring()  
server = ring.get_node('0000')  
server = ring.get_node('1111')  
server = ring.get_node('2222')  
server = ring.get_node('3333')  
server = ring.get_node('4444')  
server = ring.get_node('5555')  
server = ring.get_node('6666')  
server = ring.get_node('7777')  
server = ring.get_node('8888')  
server = ring.get_node('9999')

 

posted @ 2018-04-12 15:57  bioamin  阅读(108)  评论(0)    收藏  举报