[Swift]LeetCode886. 可能的二分法 | Possible Bipartition
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
➤微信公众号:山青咏芝(shanqingyongzhi)
➤博客园地址:山青咏芝(https://www.cnblogs.com/strengthen/)
➤GitHub地址:https://github.com/strengthen/LeetCode
➤原文地址: https://www.cnblogs.com/strengthen/p/10603871.html
➤如果链接不是山青咏芝的博客园地址,则可能是爬取作者的文章。
➤原文已修改更新!强烈建议点击原文地址阅读!支持作者!支持原创!
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
Given a set of N people (numbered 1, 2, ..., N), we would like to split everyone into two groups of any size.
Each person may dislike some other people, and they should not go into the same group.
Formally, if dislikes[i] = [a, b], it means it is not allowed to put the people numbered a and b into the same group.
Return true if and only if it is possible to split everyone into two groups in this way.
Example 1:
Input: N = 4, dislikes = [[1,2],[1,3],[2,4]]
Output: true
Explanation: group1 [1,4], group2 [2,3]
Example 2:
Input: N = 3, dislikes = [[1,2],[1,3],[2,3]]
Output: false
Example 3:
Input: N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
Output: false
Note:
1 <= N <= 20000 <= dislikes.length <= 100001 <= dislikes[i][j] <= Ndislikes[i][0] < dislikes[i][1]- There does not exist
i != jfor whichdislikes[i] == dislikes[j].
给定一组 N 人(编号为 1, 2, ..., N), 我们想把每个人分进任意大小的两组。
每个人都可能不喜欢其他人,那么他们不应该属于同一组。
形式上,如果 dislikes[i] = [a, b],表示不允许将编号为 a 和 b 的人归入同一组。
当可以用这种方法将每个人分进两组时,返回 true;否则返回 false。
示例 1:
输入:N = 4, dislikes = [[1,2],[1,3],[2,4]] 输出:true 解释:group1 [1,4], group2 [2,3]
示例 2:
输入:N = 3, dislikes = [[1,2],[1,3],[2,3]] 输出:false
示例 3:
输入:N = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]] 输出:false
提示:
1 <= N <= 20000 <= dislikes.length <= 100001 <= dislikes[i][j] <= Ndislikes[i][0] < dislikes[i][1]- 对于
dislikes[i] == dislikes[j]不存在i != j
1 class Solution { 2 func possibleBipartition(_ N: Int, _ dislikes: [[Int]]) -> Bool { 3 var len:Int = dislikes.count 4 if len < 2 {return true} 5 var color:[Int] = [Int](repeating:0,count:N + 1) 6 var graph:[[Int]] = [[Int]](repeating:[Int](),count:N + 1) 7 for i in 0..<len 8 { 9 var m:Int = dislikes[i][0] 10 var n:Int = dislikes[i][1] 11 graph[m].append(n) 12 graph[n].append(m) 13 } 14 for i in 1...N 15 { 16 if color[i] == 0 17 { 18 color[i] = 1 19 var q:[Int] = [Int]() 20 q.append(i) 21 while (!q.isEmpty) 22 { 23 var cur:Int = q.removeFirst() 24 for j in graph[cur] 25 { 26 if color[j] == 0 27 { 28 color[j] = color[cur] == 1 ? 2 : 1 29 q.append(j) 30 } 31 else 32 { 33 if color[j] == color[cur] {return false} 34 } 35 } 36 } 37 } 38 } 39 return true 40 } 41 }
【DFS】
1 class Solution { 2 func possibleBipartition(_ N: Int, _ dislikes: [[Int]]) -> Bool { 3 var graph:[[Int]] = [[Int]](repeating:[Int](repeating:0,count:N),count:N) 4 for d in dislikes 5 { 6 graph[d[0] - 1][d[1] - 1] = 1 7 graph[d[1] - 1][d[0] - 1] = 1 8 } 9 var group:[Int] = [Int](repeating:0,count:N) 10 for i in 0..<N 11 { 12 if group[i] == 0 && !dfs(graph, &group, i, 1) 13 { 14 return false 15 } 16 } 17 return true 18 } 19 20 func dfs(_ graph:[[Int]],_ group:inout [Int],_ index:Int,_ g:Int) -> Bool 21 { 22 group[index] = g 23 for i in 0..<graph.count 24 { 25 if graph[index][i] == 1 26 { 27 if group[i] == g 28 { 29 return false 30 } 31 if group[i] == 0 && !dfs(graph, &group, i, -g) 32 { 33 return false 34 } 35 } 36 } 37 return true 38 } 39 }

浙公网安备 33010602011771号