图论

最短路

迪杰斯特拉

vector<pair<int, int>> e[MAXN];
void addedge(int u, int v, int w) {
    e[u].emplace_back(v, w);
    e[v].emplace_back(u, w);
}
bool vis[MAXN];
int dist[MAXN];
void dijkstra(int s) {
    struct GraphNode {
        int u, d;
        bool operator <(const GraphNode& p) const {
            return p.d < d;
        }
    };
    priority_queue<GraphNode> q;
    memset(vis, false, sizeof(vis));
    memset(dist, 0x3f, sizeof(dist));
    dist[s] = 0, q.push({s, dist[s]});
    while (!q.empty()) {
        int u = q.top().u; q.pop();
        if (vis[u]) continue;
        vis[u] = true;
        for (auto& [v, w]: e[u]) {
            if (dist[u] + w < dist[v]) {
                dist[v] = dist[u] + w;
                q.push({v, dist[v]});
            }
        }
    }
}

struct edge {
    int to, next, val;
} e[MAXN << 1];
int head[MAXN], idx;
void addedge(int u, int v, int w) {
    e[++idx] = {v, head[u], w};
    head[u] = idx;
}
bool vis[MAXN];
int dist[MAXN], pre[MAXN];
void dijkstra(int s) {
    struct GraphNode {
        int u, d;
        bool operator <(const GraphNode& p) const {
            return p.d < d;
        }
    };
    priority_queue<GraphNode> q;
    memset(vis, false, sizeof(vis));
    memset(dist, 0x3f, sizeof(dist));
    dist[s] = 0, q.push({s, dist[s]});
    while (!q.empty()) {
        int u = q.top().u; q.pop();
        if (vis[u]) continue;
        vis[u] = true;
        for (auto& [v, w]: e[u]) {
            if (dist[u] + w < dist[v]) {
                dist[v] = dist[u] + w;
                pre[v] = u;
                q.push({v, dist[v]});
            }
        }
    }
}
// 无解特判否则死循环
vector<int> path;
void dfs(int s, int t) {
    if (s == t) {
        path.push_back(s);
        return ;
    }
    dfs(s, pre[t]);
    path.push_back(s);
}

SPFA

双优化

vector<pair<int, int>> e[MAXN];
void addedge(int u, int v, int w) {
    e[u].emplace_back(v, w);
    e[v].emplace_back(u, w);
}
bool inq[MAXN];
int dist[MAXN];
void spfa(int s) {
    deque<int> q;
    memset(inq, false, sizeof(inq));
    memset(dist, 0x3f, sizeof(dist));
    inq[s] = true, dist[s] = 0, q.push_back(s);
    int cnt = 0, val = 0;
    while (!q.empty()) {
        int u = q.front(); q.pop_front();
        // 如果有负边, 可以去掉这个优化
        if (dist[u] * cnt > val) {
            q.push_back(u);
            continue;
        }
        inq[u] = false, --cnt, val -= dist[u];
        for (auto& [v, w]: e[u]) {
            int v = e[i].to, w = e[i].val;
            if (dist[u] + w < dist[v]) {
                dist[v] = dist[u] + w;
                if (!inq[v]) {
                    inq[v] = true, ++cnt, val += dist[v];
                    if (!q.empty() && dist[v] < dist[q.front()]) {
                        q.push_front(v);
                    } else {
                        q.push_back(v);
                    }
                }
            }
        }
    }
}

判断负环

vector<pair<int, int>> e[MAXN];
void addedge(int u, int v, int w) {
    e[u].emplace_back(v, w);
    e[v].emplace_back(u, w);
}
bool inq[MAXN];
int dist[MAXN], neg[MAXN];
bool spfa(int s, int n) {
    memset(neg, 0, sizeof(neg));
    memset(inq, false, sizeof(inq));
    memset(dist, 0x3f, sizeof(dist));
    queue<int> q;
    inq[s] = true, dist[s] = 0, q.push(s);
    while (!q.empty()) {
        int u = q.front(); q.pop();
        inq[u] = false;
        for (auto& [v, w]: e[u]) {
            if (dist[u] + w < dist[v]) {
                dist[v] = dist[u] + w;
                neg[v] = neg[u] + 1;
                if (neg[v] >= n) {
                    return true;
                }
                if (!inq[v]) {
                    inq[v] = true;
                    q.push(v);
                }
            }
        }
    }
    return false;
}

弗洛伊德

// 读入前初始化图为无穷大
int g[MAXN][MAXN];
void floyd(int n) {
    for (int k = 1; k <= n; ++k) {
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= n; ++j) {
                if (g[i][j] > g[i][k] + g[k][j]) {
                    g[i][j] = g[i][k] + g[k][j];
                }
            }
        }
    }
}

打印欧拉路径

// 找到入度为0的点, 没有的话取任意点
vector<int> path;
void dfs(int u) {
    while (!e[u].empty()) {
        int v = e[u].back();
        e[u].pop_back();
        dfs(v);
    }
    path.push_back(u);
};
reverse(path.begin(), path.end());

tarjan

scc

class SCC {
public:
    SCC(int _n): n(_n), low(_n), dfn(_n), belong(_n), ins(_n) {
        idx = sccn = 0;
    }
    void addedge(int u, int v) {
        e[u].push_back(v);
        // e[v].push_back(u);
    }
    void dfs(int u) {
        dfn[u] = low[u] = ++idx;
        pt.push(u), ins[u] = true;
        for (int& v: e[u]) {
            if (!dfn[v]) {
                dfs(v);
                low[u] = min(low[u], low[v]);
            } else if (ins[v]) {
                low[u] = min(low[u], dfn[v]);
            }
        }
        int top;
        if (low[u] == dfn[u]) {
            do {
                top = pt.top(), pt.pop();
                ins[top] = false, belong[top] = sccn;
            } while (u != top);
            ++sccn;
        }
    }
    void tarjan() {
        for (int i = 0; i < n; ++i) {
            if (!dfn[i]) {
                dfs(i);
            }
        }
    }
    vector<vector<int>> groups() {
        vector<vector<int>> g(sccn);
        for (int i = 0; i < n; ++i) {
            g[belong[i]].push_back(i);
        }
        return g;
    }
    int belongOf(int u) {
        return belong.at(u);
    }
private:
    int n, idx, sccn;
    vector<int> low, dfn, belong;
    stack<int> pt;
    vector<bool> ins;
    unorderer_map<int, vector<int>> e;
};

割点割边

// 判断割边判断条件表达式改成low[v] > dfn[u]
vector<int> e[MAXN];
void addedge(int u, int v) {
    e[u].push_back(v);
    e[v].push_back(u);
}
bool iscut[MAXN];
int low[MAXN], dfn[MAXN], idx;
void dfs(int u, int root) {
    dfn[u] = low[u] = ++idx;
    int son = 0;
    for (int v: e[u]) {
        if (!dfn[v]) {
            dfs(v, root);
            low[u] = min(low[u], low[v]);
            if (low[v] >= dfn[u] && u != root) {
                iscut[u] = true;
            } else if (u == root) { 
                ++son;
            }
        } else {
            low[u] = min(low[u], dfn[v]);
        }
    }
    if (u == root && son >= 2) {
        iscut[root] = true;
    }
}
int countCuts(int n) {
    for (int i = 1; i <= n; ++i) {
        if (!dfn[i]) { 
            dfs(i, i);
        }
    }
    int res = 0;
    for (int i = 1; i <= n; ++i) {
        res += iscut[i];
    }
    return res;
}

一般图最大匹配

queue<int> q;
vector<int> e[MAXN];
int fa[MAXN], ID[MAXN], tec, vis[MAXN], match[MAXN], pre[MAXN];
void init(int n) {
    tec = 0;
    for (int i = 1; i <= n; ++i) {
        e[i].clear();
        ID[i] = match[i] = 0;
    }
}
void addedge(int u, int v) {
    e[u].push_back(v);
}
int find(int x) {
    return fa[x] == x ? x : fa[x] = find(fa[x]);
}
int lca(int x, int y) {
    ++tec;
    while (true) {
        if (x) {
            x = find(x);
            if (ID[x] == tec) {
                return x;
            } else {
                ID[x] = tec;
                x = pre[match[x]];
            }
        }
        swap(x, y);
    }
}
void shrink(int x, int y, int lca) {
    while (find(x) != lca) {
        pre[x] = y;
        y = match[x];
        if (vis[y] == 2) {
            vis[y] = 1;
            q.push(y);
        }
        if (find(x) == x) {
            fa[x] = lca;
        }
        if (find(y) == y) {
            fa[y] = lca;
        }
        x = pre[y];
    }
}
bool aug(int s, int n) {
    for (int i = 1; i <= n; ++i) {
        fa[i] = i;
        vis[i] = pre[i] = 0;
    }
    while (!q.empty()) {
        q.pop();
    }
    q.push(s), vis[s] = 1;
    while (!q.empty()) {
        int u = q.front(); q.pop();
        for (int v: e[u]) {
            if (find(u) == find(v) || vis[v] == 2) {
                continue;
            }
            if (!vis[v]) {
                vis[v] = 2;
                pre[v] = u;
                if (!match[v]) {
                    int last;
                    for (int i = v; i; i = last) {
                        last = match[pre[i]];
                        match[i] = pre[i];
                        match[pre[i]] = i;
                    }
                    return true;
                }
                vis[match[v]] = 1;
                q.push(match[v]);
            } else {
                int f = lca(u, v);
                shrink(u, v, f);
                shrink(v, u, f);
            }
        }
    }
    return false;
}
int EMA(int n) {
    int res = 0;
    for (int i = 1; i <= n; ++i) {
        res += (!match[i] && aug(i, n));
    }
    return res;
}

二分图

最大匹配 = 最小点覆盖 = 总点数 - 最大独立集 = 总点数 - 最小路径覆盖
最小点覆盖: 从图中选出最少的点, 使得图中的每一条边至少有一个顶点被选
最大独立集: 在一个图中, 找到一个最大的集合包含的所有点相互之间都不存在连边
最小路径覆盖: 在一个有向图中, 找出最少的路径, 使得这些路径经过了所有的点

二分图最大匹配

vector<int> e[MAXN];
int vis[MAXN], match[MAXN];
bool dfs(int u, int sgn) {
    if (vis[u] == sgn) return false;
    vis[u] = sgn;
    for (int& v: e[u]) {
        if (!match[v] || dfs(match[v], sgn)) {
            match[v] = u;
            return true;
        }
    }
    return false;
}
int hungary(int n) {
    int res = 0;
    memset(vis, false, sizeof(vis));
    memset(match, 0, sizeof(match));
    for (int i = 1; i <= n; ++i) {
        res += dfs(i, i);
    }
    return res;
}

染色法判断二分图

int col[MAXN];
vector<int> e[MAXN];
bool dfp(int u, int c) {
    col[u] = c;
    for (int& v: e[u]) {
        if (col[v]) {
            if (col[v] == c) {
                return false;
            }
        } else if (!dfp(v, 3 - c)) {
            return false;
        }
    }
    return true;
}
bool isBG(int n) {
    for (int i = 1; i <= n; ++i) {
        if (col[i]) {
            continue;
        }
        if (!dfp(i, 1)) {
            return false;
        }
    }
    return true;
}

最小生成树

普利姆

struct edge { 
    int to, next, val; 
} e[MAXN << 1];
int head[MAXN], idx;
void addedge(int u, int v, int w) {
    e[++idx] = edge{v, head[u], w};
    head[u] = idx;
}
bool vis[MAXN];
int dist[MAXN];
int prim(int n) {
    struct PrimeNode {
        int u, dist;
        bool operator <(const PrimeNode& p) const { 
            return p.dist < dist; 
        }
    };
    priority_queue<PrimeNode> Q;
    memset(vis, false, sizeof(vis)); 
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0, Q.push({1, 0}); 
    int cnt = 0, res = 0;
    while (!Q.empty()) {
        int u = Q.top().u; Q.pop();
        if (vis[u]) continue;
        vis[u] = true, ++cnt, res += dist[u];
        for (int i = head[u]; i; i = e[i].next) {
            int v = e[i].to, w = e[i].val;
            if (w < dist[v]) {
                dist[v] = w;
                Q.push({v, dist[v]});
            }
        }
    }
    return cnt == n - 1 ? res : -1;
}

克鲁斯卡尔

struct edge {
    int u, v, w;
    bool operator <(const edge& p) const {
        return w < p.w;
    }
} e[MAXN];
int kruskal(int n, int m) {
    vector<int> fa(n + 1);
    iota(fa.begin(), fa.end(), 0);
    function<int(int)> find = [&](int x) -> int {
        return fa[x] == x ? x : fa[x] = find(fa[x]);
    };
    auto merge = [&](int x, int y) -> void {
        fa[find(x)] = find(y);
    };
    sort(e + 1, e + m + 1);
    int cnt = 0, res = 0;
    for (int i = 1; i <= m; ++i) {
        auto& [u, v, w] = e[i];
        int x = find(u);
        int y = find(v);
        if (x == y) {
            continue;
        }
        merge(x, y), ++cnt, res += w;
        if (cnt == n - 1) {
            break;
        }
    }
    return cnt == n - 1 ? res : -1;
}

网络流

最大流

const int INF = 0x3f3f3f3f;
struct edge {
    int to, next, val;
} e[MAXN << 1];
int head[MAXN], idx = 1;
void add(int u, int v, int w) {
    e[++idx] = edge{v, head[u], w};
    head[u] = idx;
}
void addedge(int u, int v, int w) {
    add(u, v, w);
    add(v, u, 0);
}
int depth[MAXN], cur[MAXN];
bool bfs(int s, int t) {
    queue<int> Q;
    memset(depth, 0x3f, sizeof(depth));
    cur[s] = head[s], depth[s] = 0, Q.push(s);
    while (!Q.empty()) {
        int u = Q.front(); Q.pop();
        if (u == t) return true;
        for (int i = head[u]; i; i = e[i].next) {
            int v = e[i].to, w = e[i].val;
            if (depth[v] == INF && w) {
                cur[v] = head[v];
                depth[v] = depth[u] + 1;
                Q.push(v);
            }
        }
    }
    return false;
}
int dfs(int u, int t, int limit) {
    if (!limit || u == t) return limit;
    int flow = 0;
    for (int i = cur[u]; i; i = e[i].next) {
        cur[u] = i;
        int v = e[i].to, w = e[i].val;
        if (depth[v] == depth[u] + 1 && w) {
            int k = dfs(v, t, min(limit, w));
            flow += k, limit -= k;
            e[i].val -= k, e[i ^ 1].val += k;
            if (!limit) break;
        }
    }
    return flow;
}
int maxflow(int s, int t) {
    int maxflow = 0;
    while (bfs(s, t)) {
        maxflow += dfs(s, t, INF);
    }
    return maxflow;
}

最小费用最大流

const int INF = 0x3f3f3f3f;
struct edge {
    int to, next;
    int flow, cost;
} e[MAXN << 1];
int head[MAXN], idx = 1;
void add(int u, int v, int flow, int cost) {
    e[++idx] = {v, head[u], flow, cost};
    head[u] = idx;
}
void addedge(int u, int v, int flow, int cost) {
    add(u, v, flow, cost);
    add(v, u, 0, -cost);
}
bool vis[MAXN];
int dist[MAXN];
bool spfa(int s, int t) {
    queue<int> Q;
    memset(dist, 0x3f, sizeof(dist));
    dist[s] = 0, Q.push(s);
    while (!Q.empty()) {
        int u = Q.front(); Q.pop();
        vis[u] = false;
        for (int i = head[u]; i; i = e[i].next) {
            int v = e[i].to, w = e[i].cost;
            if (e[i].flow && dist[u] + w < dist[v]) {
                dist[v] = dist[u] + w;
                if (!vis[v]) {
                    vis[v] = true;
                    Q.push(v);
                }
            }
        }
    }
    return dist[t] != INF;
}
int mincost, maxflow, cur[MAXN];
int dfs(int u, int t, int limit) {
    if (!limit || u == t) return limit;
    vis[u] = true;
    int flow = 0;
    for (int i = head[u]; i; i = e[i].next) {
        cur[u] = i;
        int v = e[i].to, w = e[i].flow;
        if (!vis[v] && e[i].flow && dist[v] == dist[u] + e[i].cost) {
            int k = dfs(v, t, min(limit, w));
            if (!k) continue;
            flow += k, limit -= k;
            e[i].flow -= k, e[i ^ 1].flow += k;
            mincost += e[i].cost * k;
            if (!limit) break;
        }
    }
    vis[u] = false;
    return flow;
}
pair<int, int> mcmf(int s, int t) {
    while (spfa(s, t)) {
        memcpy(cur, head, sizeof(head));
        maxflow += dfs(s, t, INF);
    }
    return {mincost, maxflow};
}

最大流

namespace atcoder {

namespace internal {
template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};
}  // namespace internal

template <class Cap> struct mf_graph {
public:
    mf_graph() : _n(0) {}
    explicit mf_graph(int n) : _n(n), g(n) {}
    int add_edge(int from, int to, Cap cap) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap});
        g[to].push_back(_edge{from, from_id, 0});
        return m;
    }
    struct edge {
        int from, to;
        Cap cap, flow;
    };
    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result;
        for (int i = 0; i < m; i++) {
            result.push_back(get_edge(i));
        }
        return result;
    }
    void change_edge(int i, Cap new_cap, Cap new_flow) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        assert(0 <= new_flow && new_flow <= new_cap);
        auto& _e = g[pos[i].first][pos[i].second];
        auto& _re = g[_e.to][_e.rev];
        _e.cap = new_cap - new_flow;
        _re.cap = new_flow;
    }
    Cap flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    Cap flow(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        std::vector<int> level(_n), iter(_n);
        internal::simple_queue<int> que;
        auto bfs = [&]() {
            std::fill(level.begin(), level.end(), -1);
            level[s] = 0;
            que.clear();
            que.push(s);
            while (!que.empty()) {
                int v = que.front();
                que.pop();
                for (auto e : g[v]) {
                    if (e.cap == 0 || level[e.to] >= 0) continue;
                    level[e.to] = level[v] + 1;
                    if (e.to == t) return;
                    que.push(e.to);
                }
            }
        };
        auto dfs = [&](auto self, int v, Cap up) {
            if (v == s) return up;
            Cap res = 0;
            int level_v = level[v];
            for (int& i = iter[v]; i < int(g[v].size()); i++) {
                _edge& e = g[v][i];
                if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
                Cap d =
                    self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
                if (d <= 0) continue;
                g[v][i].cap += d;
                g[e.to][e.rev].cap -= d;
                res += d;
                if (res == up) return res;
            }
            level[v] = _n;
            return res;
        };
        Cap flow = 0;
        while (flow < flow_limit) {
            bfs();
            if (level[t] == -1) break;
            std::fill(iter.begin(), iter.end(), 0);
            Cap f = dfs(dfs, t, flow_limit - flow);
            if (!f) break;
            flow += f;
        }
        return flow;
    }
    std::vector<bool> min_cut(int s) {
        std::vector<bool> visited(_n);
        internal::simple_queue<int> que;
        que.push(s);
        while (!que.empty()) {
            int p = que.front();
            que.pop();
            visited[p] = true;
            for (auto e : g[p]) {
                if (e.cap && !visited[e.to]) {
                    visited[e.to] = true;
                    que.push(e.to);
                }
            }
        }
        return visited;
    }
private:
    int _n;
    struct _edge {
        int to, rev;
        Cap cap;
    };
    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder
using namespace atcoder;

最小费用最大流

namespace atcoder {

namespace internal {
template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};
template <class E> struct csr {
    std::vector<int> start;
    std::vector<E> elist;
    explicit csr(int n, const std::vector<std::pair<int, E>>& edges)
        : start(n + 1), elist(edges.size()) {
        for (auto e : edges) {
            start[e.first + 1]++;
        }
        for (int i = 1; i <= n; i++) {
            start[i] += start[i - 1];
        }
        auto counter = start;
        for (auto e : edges) {
            elist[counter[e.first]++] = e.second;
        }
    }
};

} // namespace internal

template <class Cap, class Cost> struct mcf_graph {
public:
    mcf_graph() {}
    explicit mcf_graph(int n) : _n(n) {}
    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        assert(0 <= cost);
        int m = int(_edges.size());
        _edges.push_back({from, to, cap, 0, cost});
        return m;
    }
    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };
    edge get_edge(int i) {
        int m = int(_edges.size());
        assert(0 <= i && i < m);
        return _edges[i];
    }
    std::vector<edge> edges() { return _edges; }
    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        int m = int(_edges.size());
        std::vector<int> edge_idx(m);
        auto g = [&]() {
            std::vector<int> degree(_n), redge_idx(m);
            std::vector<std::pair<int, _edge>> elist;
            elist.reserve(2 * m);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] = degree[e.from]++;
                redge_idx[i] = degree[e.to]++;
                elist.push_back({e.from, {e.to, -1, e.cap - e.flow, e.cost}});
                elist.push_back({e.to, {e.from, -1, e.flow, -e.cost}});
            }
            auto _g = internal::csr<_edge>(_n, elist);
            for (int i = 0; i < m; i++) {
                auto e = _edges[i];
                edge_idx[i] += _g.start[e.from];
                redge_idx[i] += _g.start[e.to];
                _g.elist[edge_idx[i]].rev = redge_idx[i];
                _g.elist[redge_idx[i]].rev = edge_idx[i];
            }
            return _g;
        }();
        auto result = slope(g, s, t, flow_limit);
        for (int i = 0; i < m; i++) {
            auto e = g.elist[edge_idx[i]];
            _edges[i].flow = _edges[i].cap - e.cap;
        }
        return result;
    }
private:
    int _n;
    std::vector<edge> _edges;
    // inside edge
    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };
    std::vector<std::pair<Cap, Cost>> slope(internal::csr<_edge>& g,
                                            int s,
                                            int t,
                                            Cap flow_limit) {
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        // dual_dist[i] = (dual[i], dist[i])
        std::vector<std::pair<Cost, Cost>> dual_dist(_n);
        std::vector<int> prev_e(_n);
        std::vector<bool> vis(_n);
        struct Q {
            Cost key;
            int to;
            bool operator<(Q r) const { return key > r.key; }
        };
        std::vector<int> que_min;
        std::vector<Q> que;
        auto dual_ref = [&]() {
            for (int i = 0; i < _n; i++) {
                dual_dist[i].second = std::numeric_limits<Cost>::max();
            }
            std::fill(vis.begin(), vis.end(), false);
            que_min.clear();
            que.clear();
            // que[0..heap_r) was heapified
            size_t heap_r = 0;
            dual_dist[s].second = 0;
            que_min.push_back(s);
            while (!que_min.empty() || !que.empty()) {
                int v;
                if (!que_min.empty()) {
                    v = que_min.back();
                    que_min.pop_back();
                } else {
                    while (heap_r < que.size()) {
                        heap_r++;
                        std::push_heap(que.begin(), que.begin() + heap_r);
                    }
                    v = que.front().to;
                    std::pop_heap(que.begin(), que.end());
                    que.pop_back();
                    heap_r--;
                }
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                Cost dual_v = dual_dist[v].first, dist_v = dual_dist[v].second;
                for (int i = g.start[v]; i < g.start[v + 1]; i++) {
                    auto e = g.elist[i];
                    if (!e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual_dist[e.to].first + dual_v;
                    if (dual_dist[e.to].second - dist_v > cost) {
                        Cost dist_to = dist_v + cost;
                        dual_dist[e.to].second = dist_to;
                        prev_e[e.to] = e.rev;
                        if (dist_to == dist_v) {
                            que_min.push_back(e.to);
                        } else {
                            que.push_back(Q{dist_to, e.to});
                        }
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }
            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) +
                //         (shortest(s, v) + dual[s] - dual[v]) = - shortest(s,
                //         t) + dual[t] + shortest(s, v) = shortest(s, v) -
                //         shortest(s, t) >= 0 - (n-1)C
                dual_dist[v].first -= dual_dist[t].second - dual_dist[v].second;
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost_per_flow = -1;
        std::vector<std::pair<Cap, Cost>> result = {{Cap(0), Cost(0)}};
        while (flow < flow_limit) {
            if (!dual_ref()) break;
            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                c = std::min(c, g.elist[g.elist[prev_e[v]].rev].cap);
            }
            for (int v = t; v != s; v = g.elist[prev_e[v]].to) {
                auto& e = g.elist[prev_e[v]];
                e.cap += c;
                g.elist[e.rev].cap -= c;
            }
            Cost d = -dual_dist[s].first;
            flow += c;
            cost += c * d;
            if (prev_cost_per_flow == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost_per_flow = d;
        }
        return result;
    }
};

}  // namespace atcoder
using namespace atcoder;
posted @ 2021-08-11 16:25  stler  阅读(79)  评论(0)    收藏  举报