二叉树
| 这个作业属于哪个课程 | https://edu.cnblogs.com/campus/qdu/DS2020 |
|---|---|
| 这个作业要求在哪里 | https://edu.cnblogs.com/campus/qdu/DS2020/homework/11430 |
| 这个作业的目标 | 完成二叉树的实验 |
| 学号 | 2018204281 |
| 一、实验目的 | |
| 1、掌握二叉树的基本特性 | |
| 2、掌握二叉树的先序、中序、后序的递归遍历算法 | |
| 3、理解二叉树的先序、中序、后序的非递归遍历算法 | |
| 4、通过求二叉树的深度、叶子结点数和层序遍历等算法,理解二叉树的基本特性 |
二、实验预习
说明以下概念
1、二叉树:二叉树(Binary tree)是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。二叉树特点是每个结点最多只能有两棵子树,且有左右之分
2、递归遍历:所谓遍历(Traversal),是指沿着某条搜索路线,依次对树(或图)中每个节点均做一次访问。访问结点所做的操作依赖于具体的应用问题, 具体的访问操作可能是检查节点的值、更新节点的值等。不同的遍历方式,其访问节点的顺序是不一样的。遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。当然遍历的概念也适合于多元素集合的情况,如数组。
3、非递归遍历:函数直接实现书的遍历,不进行递归调用
4、层序遍历:实现二叉树的层序遍历--从根开始,依次向下,对于每一层从左向右遍历
三、实验内容和要求
1、阅读并运行下面程序,根据输入写出运行结果,并画出二叉树的形态。
#include<stdio.h>
#include<malloc.h>
#define MAX 20
#include<iostream>
typedef struct BTNode{ /*节点结构声明*/
char data ; /*节点数据*/
struct BTNode *lchild;
struct BTNode *rchild ; /*指针*/
}*BiTree;
void createBiTree(BiTree *t){ /* 先序遍历创建二叉树*/
char s;
BiTree q;
printf("\nplease input data:(exit for #)");
s=getchar();
if(s=='#'){*t=NULL; return;}
q=(BiTree)malloc(sizeof(struct BTNode));
if(q==NULL){printf("Memory alloc failure!"); exit(0);}
q->data=s;
*t=q;
createBiTree(&q->lchild); /*递归建立左子树*/
createBiTree(&q->rchild); /*递归建立右子树*/
}
void PreOrder(BiTree p){ /* 先序遍历二叉树*/
if ( p!= NULL ) {
printf("%c", p->data);
PreOrder( p->lchild ) ;
PreOrder( p->rchild) ;
}
}
void InOrder(BiTree p){ /* 中序遍历二叉树*/
if( p!= NULL ) {
InOrder( p->lchild ) ;
printf("%c", p->data);
InOrder( p->rchild) ;
}
}
void PostOrder(BiTree p){ /* 后序遍历二叉树*/
if ( p!= NULL ) {
PostOrder( p->lchild ) ;
PostOrder( p->rchild) ;
printf("%c", p->data);
}
}
void Preorder_n(BiTree p){ /*先序遍历的非递归算法*/
BiTree stack[MAX],q;
int top=0,i;
for(i=0;i<MAX;i++) stack[i]=NULL;/*初始化栈*/
q=p;
while(q!=NULL){
printf("%c",q->data);
if(q->rchild!=NULL) stack[top++]=q->rchild;
if(q->lchild!=NULL) q=q->lchild;
else
if(top>0) q=stack[--top];
else q=NULL;
}
}
void release(BiTree t){ /*释放二叉树空间*/
if(t!=NULL){
release(t->lchild);
release(t->rchild);
free(t);
}
}
int main(){
BiTree t=NULL;
createBiTree(&t);
printf("\n\nPreOrder the tree is:");
PreOrder(t);
printf("\n\nInOrder the tree is:");
InOrder(t);
printf("\n\nPostOrder the tree is:");
PostOrder(t);
printf("\n\n先序遍历序列(非递归):");
Preorder_n(t);
release(t);
return 0;
}
运行程序
输入:
ABC##DE#G##F###
运行结果:
2、在上题中补充求二叉树中求结点总数算法(提示:可在某种遍历过程中统计遍历的结点数),并在主函数中补充相应的调用验证正确性。
算法代码:
#include<malloc.h>
#define MAX 20
#include<stdio.h>
#include<iostream>
using namespace std;
typedef struct BTNode{ /*节点结构声明*/
char data ; /*节点数据*/
struct BTNode *lchild;
struct BTNode *rchild ; /*指针*/
}*BiTree;
void createBiTree(BiTree *t){ /* 先序遍历创建二叉树*/
char s;
BiTree q;
printf("\nplease input data:(exit for #)");
s=getchar();
if(s=='#'){*t=NULL; return;}
q=(BiTree)malloc(sizeof(struct BTNode));
if(q==NULL){printf("Memory alloc failure!"); exit(0);}
q->data=s;
*t=q;
createBiTree(&q->lchild); /*递归建立左子树*/
createBiTree(&q->rchild); /*递归建立右子树*/
}
void PreOrder(BiTree p){ /* 先序遍历二叉树*/
if ( p!= NULL ) {
printf("%c", p->data);
PreOrder( p->lchild ) ;
PreOrder( p->rchild) ;
}
}
void InOrder(BiTree p){ /* 中序遍历二叉树*/
if( p!= NULL ) {
InOrder( p->lchild ) ;
printf("%c", p->data);
InOrder( p->rchild) ;
}
}
void PostOrder(BiTree p){ /* 后序遍历二叉树*/
if ( p!= NULL ) {
PostOrder( p->lchild ) ;
PostOrder( p->rchild) ;
printf("%c", p->data);
}
}
void Preorder_n(BiTree p){ /*先序遍历的非递归算法*/
BiTree stack[MAX],q;
int top=0,i;
for(i=0;i<MAX;i++) stack[i]=NULL;/*初始化栈*/
q=p;
while(q!=NULL){
printf("%c",q->data);
if(q->rchild!=NULL) stack[top++]=q->rchild;
if(q->lchild!=NULL) q=q->lchild;
else
if(top>0) q=stack[--top];
else q=NULL;
}
}
void release(BiTree t){ /*释放二叉树空间*/
if(t!=NULL){
release(t->lchild);
release(t->rchild);
free(t);
}
}
int PreOrder_num(BiTree p){
int j=0;
BiTree stack[MAX],q;
int top=0,i;
for(i=0;i<MAX;i++) stack[i]=NULL;/*初始化栈*/
q=p;
while(q!=NULL){
j++;
if(q->rchild!=NULL) stack[top++]=q->rchild;
if(q->lchild!=NULL) q=q->lchild;
else
if(top>0) q=stack[--top];
else q=NULL;
}
return j;
}
int main(){
BiTree t=NULL;
createBiTree(&t);
printf("\n\nPreOrder the tree is:");
PreOrder(t);
printf("\n\nInOrder the tree is:");
InOrder(t);
printf("\n\nPostOrder the tree is:");
PostOrder(t);
printf("\n\n先序遍历序列(非递归):");
Preorder_n(t);
printf("\n\n节点的数量:");
printf("%d",PreOrder_num(t));
release(t);
return 0;
}

3、在上题中补充求二叉树中求叶子结点总数算法(提示:可在某种遍历过程中统计遍历的叶子结点数),并在主函数中补充相应的调用验证正确性。
算法代码:
#include<malloc.h>
#define MAX 20
#include<stdio.h>
#include<iostream>
using namespace std;
typedef struct BTNode{ /*节点结构声明*/
char data ; /*节点数据*/
struct BTNode *lchild;
struct BTNode *rchild ; /*指针*/
}*BiTree;
void createBiTree(BiTree *t){ /* 先序遍历创建二叉树*/
char s;
BiTree q;
printf("\nplease input data:(exit for #)");
s=getchar();
if(s=='#'){*t=NULL; return;}
q=(BiTree)malloc(sizeof(struct BTNode));
if(q==NULL){printf("Memory alloc failure!"); exit(0);}
q->data=s;
*t=q;
createBiTree(&q->lchild); /*递归建立左子树*/
createBiTree(&q->rchild); /*递归建立右子树*/
}
void PreOrder(BiTree p){ /* 先序遍历二叉树*/
if ( p!= NULL ) {
printf("%c", p->data);
PreOrder( p->lchild ) ;
PreOrder( p->rchild) ;
}
}
void InOrder(BiTree p){ /* 中序遍历二叉树*/
if( p!= NULL ) {
InOrder( p->lchild ) ;
printf("%c", p->data);
InOrder( p->rchild) ;
}
}
void PostOrder(BiTree p){ /* 后序遍历二叉树*/
if ( p!= NULL ) {
PostOrder( p->lchild ) ;
PostOrder( p->rchild) ;
printf("%c", p->data);
}
}
void Preorder_n(BiTree p){ /*先序遍历的非递归算法*/
BiTree stack[MAX],q;
int top=0,i;
for(i=0;i<MAX;i++) stack[i]=NULL;/*初始化栈*/
q=p;
while(q!=NULL){
printf("%c",q->data);
if(q->rchild!=NULL) stack[top++]=q->rchild;
if(q->lchild!=NULL) q=q->lchild;
else
if(top>0) q=stack[--top];
else q=NULL;
}
}
void release(BiTree t){ /*释放二叉树空间*/
if(t!=NULL){
release(t->lchild);
release(t->rchild);
free(t);
}
}
int PreOrder_num(BiTree p){
int j=0;
BiTree stack[MAX],q;
int top=0,i;
for(i=0;i<MAX;i++) stack[i]=NULL;/*初始化栈*/
q=p;
while(q!=NULL){
j++;
if(q->rchild!=NULL) stack[top++]=q->rchild;
if(q->lchild!=NULL) q=q->lchild;
else
if(top>0) q=stack[--top];
else q=NULL;
}
return j;
}
int LeafNodes(BiTree p) {
int num1=0 ,num2=0;
if(p==NULL)
return 0;
else if(p->lchild==NULL&&p->rchild==NULL)
return 1;
else
{
num1=LeafNodes(p->lchild) ;
num2=LeafNodes(p->rchild) ;
return (num1+num2);
}
}
int main(){
BiTree t=NULL;
createBiTree(&t);
printf("\n\nPreOrder the tree is:");
PreOrder(t);
printf("\n\nInOrder the tree is:");
InOrder(t);
printf("\n\nPostOrder the tree is:");
PostOrder(t);
printf("\n\n先序遍历序列(非递归):");
Preorder_n(t);
printf("\n\n节点的数量:");
printf("%d",PreOrder_num(t));
printf("\n\n叶结点的数量:");
printf("%d",LeafNodes(t));
release(t);
return 0;
}

4、在上题中补充求二叉树深度算法,并在主函数中补充相应的调用验证正确性。
算法代码:
#include<malloc.h>
#define MAX 20
#include<stdio.h>
#include<iostream>
using namespace std;
typedef struct BTNode{ /*节点结构声明*/
char data ; /*节点数据*/
struct BTNode *lchild;
struct BTNode *rchild ; /*指针*/
}*BiTree;
void createBiTree(BiTree *t){ /* 先序遍历创建二叉树*/
char s;
BiTree q;
printf("\nplease input data:(exit for #)");
s=getchar();
if(s=='#'){*t=NULL; return;}
q=(BiTree)malloc(sizeof(struct BTNode));
if(q==NULL){printf("Memory alloc failure!"); exit(0);}
q->data=s;
*t=q;
createBiTree(&q->lchild); /*递归建立左子树*/
createBiTree(&q->rchild); /*递归建立右子树*/
}
void PreOrder(BiTree p){ /* 先序遍历二叉树*/
if ( p!= NULL ) {
printf("%c", p->data);
PreOrder( p->lchild ) ;
PreOrder( p->rchild) ;
}
}
void InOrder(BiTree p){ /* 中序遍历二叉树*/
if( p!= NULL ) {
InOrder( p->lchild ) ;
printf("%c", p->data);
InOrder( p->rchild) ;
}
}
void PostOrder(BiTree p){ /* 后序遍历二叉树*/
if ( p!= NULL ) {
PostOrder( p->lchild ) ;
PostOrder( p->rchild) ;
printf("%c", p->data);
}
}
void Preorder_n(BiTree p){ /*先序遍历的非递归算法*/
BiTree stack[MAX],q;
int top=0,i;
for(i=0;i<MAX;i++) stack[i]=NULL;/*初始化栈*/
q=p;
while(q!=NULL){
printf("%c",q->data);
if(q->rchild!=NULL) stack[top++]=q->rchild;
if(q->lchild!=NULL) q=q->lchild;
else
if(top>0) q=stack[--top];
else q=NULL;
}
}
void release(BiTree t){ /*释放二叉树空间*/
if(t!=NULL){
release(t->lchild);
release(t->rchild);
free(t);
}
}
int PreOrder_num(BiTree p){
int j=0;
BiTree stack[MAX],q;
int top=0,i;
for(i=0;i<MAX;i++) stack[i]=NULL;/*初始化栈*/
q=p;
while(q!=NULL){
j++;
if(q->rchild!=NULL) stack[top++]=q->rchild;
if(q->lchild!=NULL) q=q->lchild;
else
if(top>0) q=stack[--top];
else q=NULL;
}
return j;
}
int LeafNodes(BiTree p) {
int num1=0 ,num2=0;
if(p==NULL)
return 0;
else if(p->lchild==NULL&&p->rchild==NULL)
return 1;
else
{
num1=LeafNodes(p->lchild) ;
num2=LeafNodes(p->rchild) ;
return (num1+num2);
}
}
int BTNodeDepth(BiTree p){
int lchilddep,rchilddep;
if(p==NULL)
return 0;
else{
lchilddep=BTNodeDepth(p->lchild);
rchilddep=BTNodeDepth(p->rchild);
return(lchilddep>rchilddep)?(lchilddep+1):(rchilddep+1);
}
}
int main(){
BiTree t=NULL;
createBiTree(&t);
printf("\n\nPreOrder the tree is:");
PreOrder(t);
printf("\n\nInOrder the tree is:");
InOrder(t);
printf("\n\nPostOrder the tree is:");
PostOrder(t);
printf("\n\n先序遍历序列(非递归):");
Preorder_n(t);
printf("\n\n节点的数量:");
printf("%d",PreOrder_num(t));
printf("\n\n叶结点的数量:");
printf("%d",LeafNodes(t));
printf("\n\n树的深度为:");
printf("%d",BTNodeDepth(t));
release(t);
return 0;
}

浙公网安备 33010602011771号