/**
* Find the contiguous subarray within an array (containing at least one number)
* which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.
click to show more practice.
More practice:
If you have figured out the O(n) solution,
try coding another solution using the divide and conquer approach, which is more subtle.
动态规划的经典题目,最大子串问题
动态方程:locMAX[i] = max(locMAX[i-1] + nums[i],nums[i])
locMAX表示局部最大的子串,必须要包含现在的数nums[i],每遍历一个数,状态都要更新
还要设置一个全局最大数,gloMAX = max(locMAX[i],gloMAX),意思是:
如果最后结果包括局部的子串,那么全局就是这个局部,如果不包含这个局部,那么全局还是前边的全局
*/
public class Q53MaximumSubarray {
public static void main(String[] args) {
int[] nums = new int[]{-2,1,-3,4,-1,2,1,-5,4};
System.out.println(maxSubArray(nums));
}
public static int maxSubArray(int[] nums) {
int glo = nums[0];
int loc = nums[0];
for (int i = 1; i < nums.length; i++) {
loc = Math.max(loc + nums[i],nums[i]);
glo = Math.max(glo,loc);
}
return glo;
}
}