文章分类 - 海量数据处理汇总
摘要:这个需要好好的看一下。http://cs.smith.edu/dftwiki/index.php/Hadoop_Tutorial_2.2_--_Running_C%2B%2B_Programs_on_Hadoop
阅读全文
摘要:http://roba.rushcj.com/?p=540如果有N个集合,求它们之间两两的相似度就需要N*(N-1)/2次计算,当N很大时这个代价仍然承受不起。于是我们需要一种方法能够不遍历所有可能的元素对就找出相似度较大的那些(大于某个给定的阈值t),这就是所谓Locality-Sensitive Hashing。第三章的后半部分基本全是围绕这一话题展开的。这里又要出现一个比较神奇的方法了:由上篇文章所述,对每一列c(即每个集合)我们都计算出了n行minhash值,我们把这n个值均分成b组,每组包含相邻的r=n/b行。对于每一列,把其每组的r个数都算一个hash值出来,把此列的编号记录到ha
阅读全文
摘要:题目:在一个文件中有 10G 个整数,乱序排列,要求找出中位数。内存限制为 2G。只写出思路即可(内存限制为 2G的意思就是,可以使用2G的空间来运行程序,而不考虑这台机器上的其他软件的占用内存)。分析:既然要找中位数,很简单就是排序的想法。那么基于字节的桶排序是一个可行的方法(请见《桶排序》):思想:将整形的每1byte作为一个关键字,也就是说一个整形可以拆成4个keys,而且最高位的keys越大,整数越大。如果高位keys相同,则比较次高位的keys。整个比较过程类似于字符串的字典序。第一步:把10G整数每2G读入一次内存,然后一次遍历这536,870,912个数据。每个数据用位运算&qu
阅读全文
摘要:From Wikipedia, the free encyclopediaJump to: navigation, searchIn computer science, the Wagner–Fischer algorithm is a dynamic programming algorithm that measures the Levenshtein distance between two strings of characters.Contents[hide]1 Calculating distance1.1 Proof of correctness1.2 Possible impro
阅读全文
摘要:笔者在实际工作中,有幸接触到海量的数据处理问题,对其进行处理是一项艰巨而复杂的任务。原因有以下几个方面:一、数据量过大,数据中什么情况都可能存在。如果说有10条数据,那么大不了每条去逐一检查,人为处理,如果有上百条数据,也可以考虑,如果数据上到千万级别,甚至过亿,那不是手工能解决的了,必须通过工具或者程序进行处理,尤其海量的数据中,什么情况都可能存在,例如,数据中某处格式出了问题,尤其在程序处理时,前面还能正常处理,突然到了某个地方问题出现了,程序终止了。二、软硬件要求高,系统资源占用率高。对海量的数据进行处理,除了好的方法,最重要的就是合理使用工具,合理分配系统资源。一般情况,如果处理的数据
阅读全文
摘要:最近有点忙,稍微空闲下来,发篇总结贴。 大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯 这样的一些涉及到海量数据的公司经常会问到。 下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。 1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数。将hash函数对
阅读全文