Chapter 7 Color Detection
img = cv2.imread('images/lambo.png') def stackImages(scale, imgArray): rows = len(imgArray) cols = len(imgArray[0]) rowsAvailable = isinstance(imgArray[0], list) width = imgArray[0][0].shape[1] height = imgArray[0][0].shape[0] if rowsAvailable: for x in range ( 0, rows): for y in range(0, cols): if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]: imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale) else: imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale) if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR) imageBlank = np.zeros((height, width, 3), np.uint8) hor = [imageBlank]*rows hor_con = [imageBlank]*rows for x in range(0, rows): hor[x] = np.hstack(imgArray[x]) ver = np.vstack(hor) else: for x in range(0, rows): if imgArray[x].shape[:2] == imgArray[0].shape[:2]: imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale) else: imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale) if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR) hor= np.hstack(imgArray) ver = hor return ver cv2.namedWindow("TrackBars") cv2.resizeWindow("TrackBars", 640, 240) cv2.createTrackbar('Hue Min', "TrackBars", 2, 179, lambda x:x) cv2.createTrackbar('Hue Max', "TrackBars", 18, 180, lambda x:x) cv2.createTrackbar('Sat Min', "TrackBars", 0, 255, lambda x:x) cv2.createTrackbar('Sat Max', "TrackBars", 255, 255, lambda x:x) cv2.createTrackbar('Value Min', "TrackBars", 51, 255, lambda x:x) cv2.createTrackbar('Value Max', "TrackBars", 255, 255, lambda x:x) # 转成HSV imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) while True: h_min = cv2.getTrackbarPos('Hue Min', "TrackBars") h_max = cv2.getTrackbarPos('Hue Max', "TrackBars") sat_min = cv2.getTrackbarPos('Sat Min', "TrackBars") sat_max = cv2.getTrackbarPos('Sat Max', "TrackBars") value_min = cv2.getTrackbarPos('Value Min', "TrackBars") value_max = cv2.getTrackbarPos('Value Max', "TrackBars") # 重点 lower = np.array([h_min, sat_min, value_min]) upper = np.array([h_max, sat_max, value_max]) mask = cv2.inRange(imgHSV, lower, upper) # 想要识别的弄成白色,其他黑色 print(h_min, h_max, sat_min, sat_max, value_min, value_max) # 就只留下mask的部分 imgResult = cv2.bitwise_and(img, img, mask=mask) # cv2.imshow('mask', mask) imgStack = stackImages(0.5, [img, imgHSV, imgResult]) cv2.imshow('imgStack', imgStack) cv2.waitKey(1)




浙公网安备 33010602011771号