判断点是否在多边形的内部(C#)

要判断点是否在多边形的内部,适用于任意多边形的方法最常用的就是射线法,即以要判断的点向左或者向右作水平射线,与多边形交点的个数为奇数个时则在多边形的内部,若为偶数个交点时则在多边形的外部,其中0个交点也为偶数个交点。

依据该原理,于是有了第一种实现

 /// <summary>
        /// 判断点是否在多边形内.
        /// ----------原理----------
        /// 注意到如果从P作水平向左的射线的话,如果P在多边形内部,那么这条射线与多边形的交点必为奇数,
        /// 如果P在多边形外部,则交点个数必为偶数(0也在内)。
        /// 所以,我们可以顺序考虑多边形的每条边,求出交点的总个数。还有一些特殊情况要考虑。假如考虑边(P1,P2),
        /// 1)如果射线正好穿过P1或者P2,那么这个交点会被算作2次,处理办法是如果P的从坐标与P1,P2中较小的纵坐标相同,则直接忽略这种情况
        /// 2)如果射线水平,则射线要么与其无交点,要么有无数个,这种情况也直接忽略。
        /// 3)如果射线竖直,而P0的横坐标小于P1,P2的横坐标,则必然相交。
        /// 4)再判断相交之前,先判断P是否在边(P1,P2)的上面,如果在,则直接得出结论:P再多边形内部。
        /// </summary>
        /// <param name="checkPoint">要判断的点</param>
        /// <param name="polygonPoints">多边形的顶点</param>
        /// <returns></returns>
        public static bool IsInPolygon2(PointF checkPoint, List<PointF> polygonPoints)
        {
            int counter = 0;
            int i;
            double xinters;
            PointF p1, p2;
            int pointCount = polygonPoints.Count;
            p1 = polygonPoints[0];
            for (i = 1; i <= pointCount; i++)
            {
                p2 = polygonPoints[i % pointCount];
                if (checkPoint.Y > Math.Min(p1.Y, p2.Y)//校验点的Y大于线段端点的最小Y
                    && checkPoint.Y <= Math.Max(p1.Y, p2.Y))//校验点的Y小于线段端点的最大Y
                {
                    if (checkPoint.X <= Math.Max(p1.X, p2.X))//校验点的X小于等线段端点的最大X(使用校验点的左射线判断).
                    {
                        if (p1.Y != p2.Y)//线段不平行于X轴
                        {
                            xinters = (checkPoint.Y - p1.Y) * (p2.X - p1.X) / (p2.Y - p1.Y) + p1.X;
                            if (p1.X == p2.X || checkPoint.X <= xinters)
                            {
                                counter++;
                            }
                        }
                    }

                }
                p1 = p2;
            }

            if (counter % 2 == 0)
            {
                return false;
            }
            else
            {
                return true;
            }
        }

由于上述的方法中关键的判断在于xinters = (checkPoint.Y - p1.Y) * (p2.X - p1.X) / (p2.Y - p1.Y) + p1.X,这里使用了除法,一般而言除法的速度会低于乘法,特别是当除法是浮点数的时候,那能否改用乘法来实现呢?答案是可以的,只要进行一定的变换就可以实现。下面是第二种实现方法。

 /// <summary>
        /// 判断点是否在多边形内.
        /// ----------原理----------
        /// 注意到如果从P作水平向左的射线的话,如果P在多边形内部,那么这条射线与多边形的交点必为奇数,
        /// 如果P在多边形外部,则交点个数必为偶数(0也在内)。
        /// </summary>
        /// <param name="checkPoint">要判断的点</param>
        /// <param name="polygonPoints">多边形的顶点</param>
        /// <returns></returns>
        public static bool IsInPolygon(PointF checkPoint, List<PointF> polygonPoints)
        {
            bool inside = false;
            int pointCount = polygonPoints.Count;
            PointF p1, p2;
            for (int i = 0, j = pointCount - 1; i < pointCount; j = i, i++)//第一个点和最后一个点作为第一条线,之后是第一个点和第二个点作为第二条线,之后是第二个点与第三个点,第三个点与第四个点...
            {
                p1 = polygonPoints[i];
                p2 = polygonPoints[j];
                if (checkPoint.Y < p2.Y)
                {//p2在射线之上
                    if (p1.Y <= checkPoint.Y)
                    {//p1正好在射线中或者射线下方
                        if ((checkPoint.Y - p1.Y) * (p2.X - p1.X) > (checkPoint.X - p1.X) * (p2.Y - p1.Y))//斜率判断,在P1和P2之间且在P1P2右侧
                        {
                            //射线与多边形交点为奇数时则在多边形之内,若为偶数个交点时则在多边形之外。
                            //由于inside初始值为false,即交点数为零。所以当有第一个交点时,则必为奇数,则在内部,此时为inside=(!inside)
                            //所以当有第二个交点时,则必为偶数,则在外部,此时为inside=(!inside)
                            inside = (!inside);
                        }
                    }
                }
                else if (checkPoint.Y < p1.Y)
                {
                    //p2正好在射线中或者在射线下方,p1在射线上
                    if ((checkPoint.Y - p1.Y) * (p2.X - p1.X) < (checkPoint.X - p1.X) * (p2.Y - p1.Y))//斜率判断,在P1和P2之间且在P1P2右侧
                    {
                        inside = (!inside);
                    }
                }
            }
            return inside;
        }
这里还使用一个隐含的知识,即顶点在射线之上。该方法摘自于《计算机图形学几何工具算法详解》。运行结果如下图



posted @ 2015-10-13 09:17  _学而时习之  阅读(827)  评论(0编辑  收藏  举报