强形式洛必达法则
(L’Hospital law) Suppose \(f\colon (a,b)\rightarrow \mathbb R\) and \(g\colon(a,b)\rightarrow \mathbb R\) are differiential in \((a,b)\) (\(-\infty\le a<b\le +\infty\)). \(g'(x)\ne 0\) in \((a,b)\) and
\[\dfrac{f(x)}{g(x)}\rightarrow A,\ \ x\rightarrow a^{+}\ (-\infty\le A\le +\infty). \]When either (1) or (2) given by
(1) \(f(x)\rightarrow 0\) and \(g(x)\rightarrow 0\) as \(x\rightarrow a^{+}\).
(2) \(g(x)\rightarrow \infty\) as \(x\rightarrow a^{+}\).
happens, we have
\[\dfrac{f(x)}{g(x)}\rightarrow A,\ \ x\rightarrow a^{+}. \]We can rewrite this result by replacing \(x\rightarrow a^{+}\) by \(x\rightarrow b^{-}\).
Proof: Since \(g'(x)\ne 0\), \(g(x)\) is strictly monotonous in \((a,b)\). Thus when either (1) or (2) happens, there exists \(\delta>0\) such that \(g(x)\ne 0\) in \((a,a+\delta)\). Now we replace \(b\) by \(a+\delta.\)
Fix \(x\) in \((a,b)\). For any \(y\) in \((a,x)\), due to Cauchy's mean value theorem, there exists \(\xi\) between \(x\) and \(y\) such that
We rewrite this as
If (1), there exists \(\delta_1>0,\delta_2>0\) such that
Pick \(y_x\in (a,a+\min\{\delta_1,\delta_2,x-a\}).\)
If (2), there exists \(\delta_3>0\) such that
Pick \(y_x\in (a,a+\min\{\delta_3,x-a\})\).
Hence \(\dfrac{f(y_x)}{g(x)},\dfrac{g(y_x)}{g(x)}\rightarrow 0\) as \(x\rightarrow a^{+}\).
Thus there exists \(\xi_x\in (y_x,x)\) such that
Obviously \(y_x,\xi_x\rightarrow a^{+}\) as \(x\rightarrow a^{+}\), hence

浙公网安备 33010602011771号