MD基本语法

Markdown是一种可以使用普通文本编辑器编写的标记语言,通过简单的标记语法,它可以使普通文本内容具有一定的格式。Markdown具有一系列衍生版本,用于扩展Markdown的功能(如表格、脚注、内嵌HTML等等),这些功能原初的Markdown尚不具备,它们能让Markdown转换成更多的格式,例如LaTeXDocbook。Markdown增强版中比较有名的有Markdown Extra、MultiMarkdown、 Maruku等。这些衍生版本要么基于工具,如Pandoc;要么基于网站,如GitHubWikipedia,在语法上基本兼容,但在一些语法和渲染效果上有改动。

本站在写文章时候可参考以下markdown语法:

Headings

# H1
## H2
### H3
#### H4
##### H5
###### H6

H1

H2

H3

H4

H5
H6

Paragraphs

This is a paragraph.
I am still part of the paragraph.

New paragraph.

This is a paragraph.
I am still part of the paragraph.

New paragraph.

Image

Web Image

![Web Image](https://i.loli.net/2019/04/13/5cb1d33cf0ee6.jpg)

Local Image

![Local Image](100.jpg)

Web Image

Web Image

Local Image

Local Image

Block Quotes

> This is a block quote

This is a block quote

Code Blocks

```javascript
// Fenced **with** highlighting
function doIt() {
    for (var i = 1; i <= slen ; i^^) {
        setTimeout("document.z.textdisplay.value = newMake()", i*300);
        setTimeout("window.status = newMake()", i*300);
    }
}

```javascript
function doIt() {
    for (var i = 1; i <= slen ; i^^) {
        setTimeout("document.z.textdisplay.value = newMake()", i*300);
        setTimeout("window.status = newMake()", i*300);
    }
}

Tables

| Colors        | Fruits          | Vegetable         |
| ------------- |:---------------:| -----------------:|
| Red           | *Apple*         | [Pepper](#Tables) |
| ~~Orange~~    | Oranges         | **Carrot**        |
| Green         | ~~***Pears***~~ | Spinach           |
Colors Fruits Vegetable
Red Apple Pepper
Orange Oranges Carrot
Green Pears Spinach

List Types

Ordered List

1. First item
2. Second item
3. Third item
  1. First item
  2. Second item
  3. Third item

Unordered List

- First item
- Second item
- Third item
  • First item
  • Second item
  • Third item

Math

$$
evidence\_{i}=\sum\_{j}W\_{ij}x\_{j}+b\_{i}
$$

$$
AveP = \int_0^1 p(r) dr
$$

When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

\[evidence\_{i}=\sum\_{j}W\_{ij}x\_{j}+b\_{i} \]

\[AveP = \int_0^1 p(r) dr \]

When \(a \ne 0\), there are two solutions to (ax^2 + bx + c = 0) and they are

\[x = {-b \pm \sqrt{b^2-4ac} \over 2a}. \]

Emoji

This is a test for emoji.
😄
🙈
😸
🍉

posted @ 2023-05-30 09:36  飛華  阅读(48)  评论(0)    收藏  举报