马走日
湖是什么,对于在象棋界厮杀的大钉来说,江湖就是一个矩阵,他的目标,就是在江湖之中骑着马,从他的位置出发,走到终点。
当然,大钉的马也遵从中国象棋中的“马走日”的规则,而且在矩阵中,也会有一些障碍物,马不能跳到障碍物上;如果大钉的马面前有障碍物,即被“别马腿”,那么他将不能跳向有障碍物的左前和右前这两个方向。
请问最少需要多少步,大钉才能骑着马跳到终点。
输入格式:
有多组测试样例。
每组第一行输入两个数 nnn 和 mmm,代表矩阵的行数和列数,2≤n≤m<1002 \leq n \leq m < 1002≤n≤m<100。
接下来输入 nnn 行字符串,其中 's' 代表起点,'e' 代表终点,'.' 代表空地,'#' 代表障碍物。
输出格式:
对应每组输入,输出骑马跳到终点的最小步数,如果跳不到终点,输出 −1-1−1。
样例1
输入:
3 3 s.. ... ..e 3 3 s#. ... #.e
输出:
4 -1
下过象棋, 还是很好理解的 ;
#include <queue> #include <cstdio> #include <cstring> #define N 110 char G[N][N]; int v[N][N], n, m; int transx[8]={1, -1, 1, -1, 2, -2, 2, -2}; int transy[8]={2, 2, -2, -2, 1, 1, -1, -1}; struct maze { int x, y, step; } r, s, t; using namespace std; int bfs(int x, int y) { queue<maze> q; r.x= x; r.y= y; r.step=0; v[x][y]= 1; q.push(r); while(!q.empty()) { s=q.front(); q.pop(); if(G[s.x][s.y]=='e') return s.step; for(int i=0; i< 4; i++) { t=s; t.x=t.x+ transx[i]; int x=t.x; t.y=t.y+ transy[i]; int y=t.y; t.step+=1; if(x>=0 && x<n && y>= 0 && y < m && !v[x][y] && G[x][y] != '#' && G[x-transx[i]][y-transy[i]/2] != '#') { //if(G[x][y]=='e') return t.step; q.push(t); v[x][y]=1; } } for(int i=4; i< 8; i++) { t=s; t.x=t.x+ transx[i]; int x=t.x; t.y=t.y+ transy[i]; int y=t.y; t.step+=1; if(x>=0 && x<n && y>= 0 && y < m && !v[x][y] && G[x][y] != '#' && G[x-transx[i]/2][y-transy[i]] != '#') { //if(G[x][y]=='e') return t.step; q.push(t); v[x][y]=1; } } } return -1; } int main() { while(scanf("%d%d", &n, &m) != EOF) { int initx, inity; for(int i=0; i<n; i++) { scanf("%s", G[i]); for(int j=0; j<m; j++){ if(G[i][j]== 's'){initx= i; inity= j; } } } memset(v, 0, sizeof(v)); printf("%d\n", bfs(initx, inity)); } return 0; }
浙公网安备 33010602011771号