转自:http://blog.sina.com.cn/s/blog_691ce2b701016reh.html

先说KM算法求二分图的最佳匹配思想,再详讲KM的实现。
【KM算法求二分图的最佳匹配思想】

对于具有二部划分( V1, V2 )的加权完全二分图,其中 V1= { x1, x2, x3, ... , xn }, V2= { y1, y2, y3, ... , yn },边< xi, yj >具有权值 Wi,j 。该带权二分图中一个总权值最大的完美匹配,称之为最佳匹配。
 
记 L(x) 表示结点 x 的标记量,如果对于二部图中的任何边<x,y>,都有 L(x)+ L(y)>= Wx,y,我们称 L 为二部图的可行顶标。
设 G(V,E) 为二部图, G'(V,E') 为二部图的子图。如果对于 G' 中的任何边<x,y> 满足, L(x)+ L(y)== Wx,y,我们称 G'(V,E') 为 G(V,E) 的等价子图。
 
定理一:设 L 是二部图 G 的可行顶标。若 L 等价子图 G有完美匹配 M,则 M 是 G 的最佳匹配。
证明:由于 GL 是 G 的等价子图,M 是 GL 的完美匹配,所以,M 也是 G  的完美匹配。以由于对于匹配 M 的每条边 e ,都有 e∈ E( GL ),而且 M 中每条边覆盖每个顶点正好一次,所以
W( M )= å W(e), e∈ M = å L(x), x∈ V
另一方面,对于 G 的任何完美匹配 M' 有
W( M' )= å W(e), e∈ M' <= å L(x), x∈ V
于是 W( M )>= W( M' ),即 M 是 G 的最优匹配。
 
由上述定理,我们可以通过来不断修改可行顶标,得到等价子图,从而求出最佳匹配。
就像匈牙利算法一样,我们依次为每一个顶点 i 寻找增广路径,如果寻找增广路径失败,我们就修改相应的可行顶标,来得到增广路径。
如图:
|  1  2  3  |
|  3  2  4  |
|  2  3  5  |
若要对这个完全二分图求最佳匹配
 
初始化:
Lx(1)= max{ y| w(1,y), 1<= y<= 3 }= max{ 1, 2, 3 }= 3, Ly(1)= 0
Lx(2)= max{ 3, 2, 4 }= 4, Ly(2)= 0
Lx(3)= max{ 2, 3, 5 }= 5, Ly(3)= 0;
我们建立等价子图( 满足 Lx(x)+ Ly(y)== W(x,y) ) 如下:
km算法求二分图最佳匹配
对于该图,运用匈牙利算法对 X 部顶点 1 求增广路径,得到一个匹配,如图( 红色代表匹配边 ):km算法求二分图最佳匹配
 对 X 部顶点 2 求增广路径失败,寻找增广路径的过程为 X 2-> Y 3-> X 1。我们把寻找增广路径失败的 DFS 的交错树中,在 X 部顶点集称之为 S, 在 Y 部的顶点集称之为 T。则 S= { 1, 2 },T= { 3 }。现在我们就通过修改顶标值来扩大等价子图,如何修改。
 
1)   我们寻找一个 d 值,使得 d= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y), x∈ S, y∉ T },因些,这时 d= min{
Lx(1)+Ly(1)-W(1,1),  Lx(1)+Ly(2)-W(1,2),  Lx(2)+Ly(1)-W(2,1),  Lx(2)+Ly(2)-W(2,2) }=
min{ 3+0- 1, 3+0-2,  4+0-3,  4+0-2 }= min{ 2, 1, 1, 2 }= 1。
寻找最小的 d 是为了保证修改后仍满足性质对于边 <x,y> 有 Lx(x)+ Ly(y)>= W(x,y)。
 
2)   然后对于顶点 x
1. 如果 x∈ S 则 Lx(x)= Lx(x)- d。
2. 如果 x∈ T 则 Ly(x)= Ly(x)+ d。
3. 其它情况保持不变。
如此修改后,我们发现对于边<x,y>,顶标 Lx(x)+ Ly(y) 的值为
1.  Lx(x)- d+ Ly(y)+ d,  x∈ S, y∈ T。
2.  Lx(x)+ Ly(y),  x∉ S,  y∉ T。
3.  Lx(x)- d+ Ly(y), x∈ S, y∉ T。
4.  Lx(x)+ Ly(y)+ d, x∉ S,  y∈ T。
易知,修改后对于任何边仍满足 Lx(x)+ Ly(y)>= W(x,y),并且第三种情况顶标值减少了 d,如此定会使等价子图扩大。
 
就上例而言: 修改后 Lx(1)= 2, Lx(2)= 3, Lx(3)= 5, Ly(1)= 0, Ly(1)= 0, Ly(2)= 0, Ly(3)= 1。
这时 Lx(2)+Ly(1)=3+0=3= W(2,1),在等价子图中增加了一条边,等价子图变为:
 km算法求二分图最佳匹配
如此按以上方法,得到等价子图的完美匹配。
 
另外计算 d 值的时候可以进行一些优化。
定义 slack(y)= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y),x∈ S,  y∉ T }
这样能在寻找增广路径的时候就顺便将 slack 求出。

(以上为摘上网络)

【KM算法及其具体过程】
(1)可行点标:每个点有一个标号,记lx[i]为X方点i的标号,ly[j]为Y方点j的标号。如果对于图中的任意边(i, j, W)都有lx[i]+ly[j]>=W,则这一组点标是可行的。特别地,对于lx[i]+ly[j]=W的边(i, j, W),称为可行边
(2)KM 算法的核心思想就是通过修改某些点的标号(但要满足点标始终是可行的),不断增加图中的可行边总数,直到图中存在仅由可行边组成的完全匹配为止,此时这个 匹配一定是最佳的(因为由可行点标的的定义,图中的任意一个完全匹配,其边权总和均不大于所有点的标号之和,而仅由可行边组成的完全匹配的边权总和等于所 有点的标号之和,故这个匹配是最佳的)。一开始,求出每个点的初始标号:lx[i]=max{e.W|e.x=i}(即每个X方点的初始标号为与这个X方 点相关联的权值最大的边的权值),ly[j]=0(即每个Y方点的初始标号为0)。这个初始点标显然是可行的,并且,与任意一个X方点关联的边中至少有一条可行边
(3)然后,从每个X方点开始DFS增广。DFS增广的过程与最大匹配的Hungary算法基本相同,只是要注意两点:一是只找可行边,二是要把搜索过程中遍历到的X方点全部记下来(可以用vst搞一下),以进行后面的修改;
(4) 增广的结果有两种:若成功(找到了增广轨),则该点增广完成,进入下一个点的增广。若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的 数量增加。方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,所有在增广轨中的Y方点的标号全部加上一个常数d,则 对于图中的任意一条边(i, j, W)(i为X方点,j为Y方点):
<1>i和j都在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变(原来是可行边则现在仍是,原来不是则现在仍不是);
<2>i在增广轨中而j不在:此时边(i, j)的(lx[i]+ly[j])的值减少了d,也就是原来这条边不是可行边(否则j就会被遍历到了),而现在可能是;
<3>j在增广轨中而i不在:此时边(i, j)的(lx[i]+ly[j])的值增加了d,也就是原来这条边不是可行边(若这条边是可行边,则在遍历到j时会紧接着执行DFS(i),此时i就会被遍历到),现在仍不是;
<4>i和j都不在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变。
这 样,在进行了这一步修改操作后,图中原来的可行边仍可行,而原来不可行的边现在则可能变为可行边。那么d的值应取多少?显然,整个点标不能失去可行性,也 就是对于上述的第<2>类边,其lx[i]+ly[j]>=W这一性质不能被改变,故取所有第<2>类边的 (lx[i]+ly[j]-W)的最小值作为d值即可。这样一方面可以保证点标的可行性,另一方面,经过这一步后,图中至少会增加一条可行边。
(5)修改后,继续对这个X方点DFS增广,若还失败则继续修改,直到成功为止;
(6)以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶 标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开 始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与 A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修 改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d。

【求二分图的最小匹配】
只需把权值取反,变为负的,再用KM算出最大权匹配,取反则为其最小权匹配。

 

O(n^4)

#define N 510
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
struct Kuhn_Munkres
{
    int n, left[N], right[N], Lx[N], Ly[N], w[N][N];
    bool S[N], T[N];
    //修改顶标, 每次修改顶标, 要么直接找到增广路, 要么新增加两个点;
    void Init(int a)
    {
        n = a;
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                scanf("%d", &w[i][j]);
    }
    void Update()
    {
        int a = 1<<30;
        //修改的顶标为S集合中的, 和!T==T-T1集合中的, 为了添加边, 分几种情况;
        for(int i = 1; i <= n; i++)
            if(S[i])
                for(int j = 1; j <= n; j++)
                    if(!T[j])
                        a = min(a, Lx[i]+Ly[j]-w[i][j]);
        //S集合中顶标-a, T集合中顶标-a, 使得图G中仍满足Lx[i]+Ly[j]>=w[i][j];
        for(int i = 1; i <= n; i++)
        {
            if(S[i])
                Lx[i] -= a;
            if(T[i])
                Ly[i] += a;
        }
    }

    bool match(int i)
    {
        S[i] = true;
        for(int j = 1; j <= n; j++)
        {
            if(Lx[i]+Ly[j] == w[i][j] && !T[j])
            {
                T[j] = true;
                if(!left[j] || match(left[j])) //增广;
                {
                  //  right[i] = j;
                    left[j] = i;
                    return true;
                }
            }
        }
        return false;
    }
    void KM()
    {
        memset(right, -1, sizeof(right));
        //赋值, 要满足Lx[x]+Ly[y] >= w[x, y]; 所以取Lx[i]为边的节点有i的最长边;
        for(int i = 1; i <= n; i++)
        {
            Lx[i] = Ly[i] = left[i] = 0;
            for(int j = 1; j <= n; j++)
                Lx[i] = max(Lx[i], w[i][j]);
        }

        //进行匹配;
        for(int i = 1; i <= n; i++)
        {
            //S记录的是x部分被匹配的点; T记录的是y部分被匹配的点;
            while(1)
            {
                for(int j = 1; j <= n; j++)
                    S[j] = T[j] = 0;
                if(match(i))
                    break;
                else
                    Update();
            }
        }
    }
}km;
int main()
{
    return 0;
}

 

O(n^3)

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;

const int N = 510;   //MAXENODES;
const int M = 510;
const int INF = 0x3f3f3f3f;

struct KM
{
    int n, m;
    int G[N][N];
    int Lx[N], Ly[N], slack[N];
    int left[N], right[N];  //right[N]; 记录后继;
    bool S[N], T[N];
    void Init(int a, int b)
    {
        this->n = n;
        this->m = m;
        memset(G, 0, sizeof(G));
    }
    void AddEdge(int u, int v, int val)
    {
        G[u][v] = val;
    }
    void update()
    {
        int a = INF;
        for(int i = 0; i < m; i++)
            if(!T[i])
                a = min(a, slack[i]);
        for(int i = 0; i < n; i++)
            if(S[i])
                Lx[i] -= a;
        for(int i = 0; i < m; i++)
            if(T[i])
                Ly[i] += a;
    }
    bool dfs(int u)
    {
        S[u] = true;
        for(int v = 0; v < m; v++)
        {
            if(T[v])
                continue;
            int temp = Lx[u]+Ly[v]-G[u][v];
            if(!temp)
            {
                T[v] = true;
                if(left[v]==-1 || dfs(left[v]))
                {
                    left[v] = u;
                    right[u] = v;
                    return true;
                }
            }
            else
                slack[v]=min(slack[v], temp);
        }
        return false;
    }
    int km()
    {
        memset(left, -1, sizeof(left));
        memset(right, -1, sizeof(right));
        memset(Ly, 0, sizeof(Ly));

        for(int i = 0; i < n; i++)
        {
            Lx[i] =  -INF;
            for(int j = 0; j < m; j++)
                Lx[i]=max(Lx[i], G[i][j]);
        }

        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < m; j++)
                slack[j] = INF;
            while(1)
            {
                memset(S, 0, sizeof(S));
                memset(T, 0, sizeof(T));
                if(dfs(i))
                    break;
                else
                    update();
            }
        }

        int ans = 0;
        for(int i = 0; i < n; i++)
        {
            ans += G[i][right[i]];
        }
        return ans;
    }
}Km;
int main()
{
    return 0;
}

 

posted on 2016-01-10 17:34  cleverbiger  阅读(184)  评论(0)    收藏  举报