现代C++编程初体验

##实验任务1

##代码

#pragma once

#include <string>

// 类T: 声明
class T {
// 对象属性、方法
public:
    T(int x = 0, int y = 0);   // 普通构造函数
    T(const T &t);  // 复制构造函数
    T(T &&t);       // 移动构造函数
    ~T();           // 析构函数

    void adjust(int ratio);      // 按系数成倍调整数据
    void display() const;           // 以(m1, m2)形式显示T类对象信息

private:
    int m1, m2;

// 类属性、方法
public:
    static int get_cnt();          // 显示当前T类对象总数

public:
    static const std::string doc;       // 类T的描述信息
    static const int max_cnt;           // 类T对象上限

private:
    static int cnt;         // 当前T类对象数目

// 类T友元函数声明
#include "Fraction.h"
#include <iostream>

// 初始化类属性
const std::string Fraction::doc = "Fraction类 v0.01版.\n目前仅支持分数对象的构造、输出、加/减/乘/除运算.";

// 构造函数
Fraction::Fraction(int up, int down) : up(up), down(down) {
    if (down == 0) {
        std::cerr << "分母不能为0" << std::endl;
        // 分母为0时,默认初始化为0/1
        this->up = 0;
        this->down = 1;
    } else {
        simplify();
    }
}

// 拷贝构造函数
Fraction::Fraction(const Fraction& other) : up(other.up), down(other.down) {}

// 获取分子
int Fraction::get_up() const {
    return up;
}

// 获取分母
int Fraction::get_down() const {
    return down;
}

// 求负
Fraction Fraction::negative() const {
    return Fraction(-up, down);
}

// 化简分数
void Fraction::simplify() {
    if (up == 0) {
        down = 1;
        return;
    }
    int sign = 1;
    if (up < 0) {
        sign *= -1;
        up = -up;
    }
    if (down < 0) {
        sign *= -1;
        down = -down;
    }
    int g = gcd(up, down);
    up = sign * (up / g);
    down = down / g;
}

// 求最大公约数
int Fraction::gcd(int a, int b) {
    return b == 0 ? a : gcd(b, a % b);
}

// 输出分数
void output(const Fraction& frac) {
    if (frac.down == 1) {
        std::cout << frac.up;
    } else {
        std::cout << frac.up << "/" << frac.down;
    }
}

// 分数相加
Fraction add(const Fraction& f1, const Fraction& f2) {
    int up = f1.up * f2.down + f2.up * f1.down;
    int down = f1.down * f2.down;
    Fraction result(up, down);
    result.simplify();
    return result;
}

// 分数相减
Fraction sub(const Fraction& f1, const Fraction& f2) {
    int up = f1.up * f2.down - f2.up * f1.down;
    int down = f1.down * f2.down;
    Fraction result(up, down);
    result.simplify();
    return result;
}

// 分数相乘
Fraction mul(const Fraction& f1, const Fraction& f2) {
    int up = f1.up * f2.up;
    int down = f1.down * f2.down;
    Fraction result(up, down);
    result.simplify();
    return result;
}

// 分数相除
Fraction div(const Fraction& f1, const Fraction& f2) {
    if (f2.up == 0) {
        std::cerr << "分母不能为0" << std::endl;
        return Fraction(0, 1);
    }
    int up = f1.up * f2.down;
    int down = f1.down * f2.up;
    Fraction result(up, down);
    result.simplify();
    return result;
}

#include "Fraction.h"
#include <iostream>

void test1();
void test2();

int main() {
    std::cout << "测试1: Fraction类基础功能测试\n";
    test1();

    std::cout << "\n测试2: 分母为0测试: \n";
    test2();

    return 0;
}

void test1() {
    using std::cout;
    using std::endl;

    cout << "Fraction类测试: " << endl;
    cout << Fraction::doc << endl << endl;

    Fraction f1(5);
    Fraction f2(3, -4), f3(-18, 12);
    Fraction f4(f3);

    cout << "f1 = "; output(f1); cout << endl;
    cout << "f2 = "; output(f2); cout << endl;
    cout << "f3 = "; output(f3); cout << endl;
    cout << "f4 = "; output(f4); cout << endl;

    const Fraction f5(f4.negative());
    cout << "f5 = "; output(f5); cout << endl;
    cout << "f5.get_up() = " << f5.get_up()
         << ", f5.get_down() = " << f5.get_down() << endl;

    cout << "f1 + f2 = "; output(add(f1, f2)); cout << endl;
    cout << "f1 - f2 = "; output(sub(f1, f2)); cout << endl;
    cout << "f1 * f2 = "; output(mul(f1, f2)); cout << endl;
    cout << "f1 / f2 = "; output(div(f1, f2)); cout << endl;
    cout << "f4 + f5 = "; output(add(f4, f5)); cout << endl;
}

void test2() {
    using std::cout;
    using std::endl;

    Fraction f6(42, 55), f7(0, 3);

    cout << "f6 = "; output(f6); cout << endl;
    cout << "f7 = "; output(f7); cout << endl;
    cout << "f6 / f7 = "; output(div(f6, f7)); cout << endl;
}

 

    friend void func();
};

// 普通函数声明
void func();
#include "T.h"
#include <iostream>
#include <string>

// 类T实现

// static成员数据类外初始化
const std::string T::doc{"a simple class sample"};
const int T::max_cnt = 999;
int T::cnt = 0;

// 类方法
int T::get_cnt() {
   return cnt;
}

// 对象方法
T::T(int x, int y): m1{x}, m2{y} {
    ++cnt;
    std::cout << "T constructor called.\n";
}

T::T(const T &t): m1{t.m1}, m2{t.m2} {
    ++cnt;
    std::cout << "T copy constructor called.\n";
}

T::T(T &&t): m1{t.m1}, m2{t.m2} {
    ++cnt;
    std::cout << "T move constructor called.\n";
}

T::~T() {
    --cnt;
    std::cout << "T destructor called.\n";
}

void T::adjust(int ratio) {
    m1 *= ratio;
    m2 *= ratio;
}

void T::display() const {
    std::cout << "(" << m1 << ", " << m2 << ")" ;
}

// 普通函数实现
void func() {
    T t5(42);
    t5.m2 = 2049;
    std::cout << "t5 = "; t5.display(); std::cout << '\n';
}

 ##task1.cpp

#include "T.h"
#include <iostream>

void test_T();

int main() {
    std::cout << "test Class T: \n";
    test_T();

    std::cout << "\ntest friend func: \n";
    func();
}

void test_T() {
    using std::cout;
    using std::endl;

    cout << "T info: " << T::doc << endl;
    cout << "T objects'max count: " << T::max_cnt << endl;
    cout << "T objects'current count: " << T::get_cnt() << endl << endl;

    T t1;
    cout << "t1 = "; t1.display(); cout << endl;

    T t2(3, 4);
    cout << "t2 = "; t2.display(); cout << endl;

    T t3(t2);
    t3.adjust(2);
    cout << "t3 = "; t3.display(); cout << endl;

    T t4(std::move(t2));
    cout << "t4 = "; t4.display(); cout << endl;

    cout << "test: T objects'current count: " << T::get_cnt() << endl;
}

 

image

1.YES

2.

普通构造函数  功能:初始化对象的数据成员    调用时机:创建新对象时

复制构造函数  功能:通过拷贝另一个同类对象来初始化新对象   调用时机:用已有对象初始化新对象时 对象作为值参数传递给函数时

移动构造函数  功能调用时机用:高效转移资源,右值(临时对象)初始化新对象时。

3.能正确编译。

##实验任务2

##代码

##Complex.h

#ifndef COMPLEX_H
#define COMPLEX_H

#include <string>

class Complex {
public:
    static const std::string doc;  // 类说明文档

    // 构造函数
    Complex();                          // 默认构造函数,创建0+0i
    Complex(double real);               // 用实部创建复数,虚部为0
    Complex(double real, double imag);  // 用实部和虚部创建复数
    Complex(const Complex& other);      // 拷贝构造函数

    // 成员函数
    double get_real() const;           // 获取实部
    double get_imag() const;           // 获取虚部
    void add(const Complex& other);     // 复数加法,相当于+=

    // 友元函数
    friend void output(const Complex& c);           // 输出复数
    friend double abs(const Complex& c);            // 取模
    friend Complex add(const Complex& c1, const Complex& c2); // 复数相加
    friend bool is_equal(const Complex& c1, const Complex& c2);    // 判断相等
    friend bool is_not_equal(const Complex& c1, const Complex& c2); // 判断不等

private:
    double real_;  // 实部
    double imag_;  // 虚部
};

#endif // COMPLEX_H

##task2.cpp

#include "Complex.h"
#include <iostream>
#include <iomanip>
#include <complex>

using namespace std;

void test_Complex();
void test_std_complex();

int main() {
    cout << "*******测试1: 自定义类Complex*******\n";
    test_Complex();
    cout << "\n*******测试2: 标准库模板类complex*******\n";
    test_std_complex();
    return 0;
}

void test_Complex() {
    using std::cout;
    using std::endl;
    using std::boolalpha;

    cout << "类成员测试: " << endl;
    cout << Complex::doc << endl << endl;

    cout << "Complex对象测试: " << endl;
    Complex c1;
    Complex c2(3, -4);
    Complex c3(c2);
    Complex c4 = c2;
    const Complex c5(3.5);

    cout << "c1 = "; output(c1); cout << endl;
    cout << "c2 = "; output(c2); cout << endl;
    cout << "c3 = "; output(c3); cout << endl;
    cout << "c4 = "; output(c4); cout << endl;
    cout << "c5.real = " << c5.get_real()
         << ", c5.imag = " << c5.get_imag() << endl << endl;

    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << abs(c2) << endl;
    c1.add(c2);
    cout << "c1 += c2, c1 = "; output(c1); cout << endl;
    cout << boolalpha;
    cout << "c1 == c2 : " << is_equal(c1, c2) << endl;
    cout << "c1 != c2 : " << is_not_equal(c1, c2) << endl;
    c4 = add(c2, c3);
    cout << "c4 = c2 + c3, c4 = "; output(c4); cout << endl;
}

void test_std_complex() {
    using std::cout;
    using std::endl;
    using std::boolalpha;

    cout << "std::complex<double>对象测试: " << endl;
    std::complex<double> c1;
    std::complex<double> c2(3, -4);
    std::complex<double> c3(c2);
    std::complex<double> c4 = c2;
    const std::complex<double> c5(3.5);

    cout << "c1 = " << c1 << endl;
    cout << "c2 = " << c2 << endl;
    cout << "c3 = " << c3 << endl;
    cout << "c4 = " << c4 << endl;
    cout << "c5.real = " << c5.real()
         << ", c5.imag = " << c5.imag() << endl << endl;

    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << abs(c2) << endl;
    c1 += c2;
    cout << "c1 += c2, c1 = " << c1 << endl;
    cout << boolalpha;
    cout << "c1 == c2 : " << (c1 == c2) << endl;
    cout << "c1 != c2 : " << (c1 != c2) << endl;
    c4 = c2 + c3;
    cout << "c4 = c2 + c3, c4 = " << c4 << endl;
}

image

 

​​标准库模板类complex明显更简洁,标准库使用自然的数学运算符,自定义类complex需要专门的输出函数;

函数和运算在功能上是完全等价的,只是标准库的写法更接近数学表达式,直观易懂,标准库的设计通过运算符重载实现了更优雅的语法。

##问题2

2.1是,列如,如果仅通过 get_real()和 get_imag()获取数据,output()需要额外逻辑拼接字符串,不如直接访问私有变量高效,如果不直接访问私有数据,可能会导致性能损失,代码冗余​​,封装性降低等,因此,友元函数是合理的设计选择。

2.2标准库 std::complex​​没有​​将 abs()设为友元函数,std::abs(std::complex)是独立函数​​,它​​不依赖友元​​访问 std::complex的私有数据,而是通过 real()和 imag()这两个公共成员函数获取实部和虚部。

2.3需要访问私有数据,但无法通过公有接口高校实现;需要支持运算符重载,但运算符函数不能是成员。

##问题3

Complex c4 = c2是拷贝初始化,如果编译失败,那么使用直接初始化Complex c3(c2)。

##实验任务3

##代码

#pragma once
#include <string>
enum class ControlType {Play, Pause, Next, Prev, Stop, Unknown};
class PlayerControl {
public:
 PlayerControl();
 ControlType parse(const std::string& control_str); // 实现std::string --> ControlType转换
 void execute(ControlType cmd) const; // 执行控制操作(以打印输出模拟)
 static int get_cnt();
private:
 static int total_cnt;
};
#include "PlayerControl.h"
#include <iostream>
#include <algorithm>
#include <cctype>

int PlayerControl::total_cnt = 0;

PlayerControl::PlayerControl() {}

ControlType PlayerControl::parse(const std::string& control_str) {
    // 1. 将输入字符串转为小写(实现大小写不敏感)
    std::string lower_str = control_str;
    std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(),
                   [](unsigned char c) { return std::tolower(c); });

    // 2. 匹配命令并返回对应枚举
    ControlType cmd = ControlType::Unknown;
    if (lower_str == "play") {
        cmd = ControlType::Play;
    } else if (lower_str == "pause") {
        cmd = ControlType::Pause;
    } else if (lower_str == "next") {
        cmd = ControlType::Next;
    } else if (lower_str == "prev") {
        cmd = ControlType::Prev;
    } else if (lower_str == "stop") {
        cmd = ControlType::Stop;
    }

    // 3. 成功匹配时,递增总操作次数
    if (cmd != ControlType::Unknown) {
        total_cnt++;
    }

    return cmd;
}

void PlayerControl::execute(ControlType cmd) const {
    switch (cmd) {
        case ControlType::Play:
            std::cout << "[play] Playing music...\n";
            break;
        case ControlType::Pause:
            std::cout << "[Pause] Music paused\n";
            break;
        case ControlType::Next:
            std::cout << "[Next] Skipping to next track\n";
            break;
        case ControlType::Prev:
            std::cout << "[Prev] Back to previous track\n";
            break;
        case ControlType::Stop:
            std::cout << "[Stop] Music stopped\n";
            break;
        default:
            std::cout << "[Error] unknown control\n";
            break;
    }
}

int PlayerControl::get_cnt() {
    return total_cnt;
}
#include "PlayerControl.h"
#include <iostream>
void test() {
 PlayerControl controller;
 std::string control_str;
 std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n";
 while(std::cin >> control_str) {
 if(control_str == "quit")
break;

 ControlType cmd = controller.parse(control_str);
controller.execute(cmd);
 std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n";
  }
}
int main(){
    test();
}

##运行结果

image

 

 ##实验任务4

##代码

##Fraction.h

#ifndef FRACTION_H
#define FRACTION_H

#include <string>

class Fraction {
public:
    // 类属性,用于类说明
    static const std::string doc;

    // 构造函数
    Fraction(int up = 0, int down = 1);
    Fraction(const Fraction& other);

    // 接口
    int get_up() const;
    int get_down() const;
    Fraction negative() const;

    // 友元函数声明(工具函数)
    friend void output(const Fraction& frac);
    friend Fraction add(const Fraction& f1, const Fraction& f2);
    friend Fraction sub(const Fraction& f1, const Fraction& f2);
    friend Fraction mul(const Fraction& f1, const Fraction& f2);
    friend Fraction div(const Fraction& f1, const Fraction& f2);

private:
    // 对象属性:分子和分母
    int up;
    int down;

    // 内部工具函数:化简分数
    void simplify();
    // 内部工具函数:求最大公约数
    int gcd(int a, int b);
};

#endif // FRACTION_H

image

 友元函数.友元函数可以直接访问分子分母这些私有成员,无需通过类的接口间接获取;静态成员函数需要通过类名或对象来调用,而不能直接访问私有成员;命名空间方案的自由函数也无法直接访问类的私有成员,必须通过类提供的公有接口来获取分子分母;

posted @ 2025-10-28 21:23  石朗鹏  阅读(7)  评论(1)    收藏  举报