- 不同路径
class Solution {
public:
int uniquePaths(int m, int n) {
int answer = 0;
vector<vector<int>> dp(m, vector<int>(n, 0));
for(int i = 0; i < m; i++)
{
dp[i][0] = 1;
}
for(int i = 0; i < n; i++)
{
dp[0][i] = 1;
}
for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++)
{
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
return dp[m - 1][n - 1];
}
};
- 不同路径 II
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
vector<vector<int>> dp(obstacleGrid.size(), vector<int>(obstacleGrid[0].size(), 0));
for(int i = 0; i < obstacleGrid.size(); i++)
{
if(obstacleGrid[i][0] == 0)
dp[i][0] = 1;
else
break;
}
for(int i = 0; i < obstacleGrid[0].size(); i++)
{
if(obstacleGrid[0][i] == 0)
dp[0][i] = 1;
else
break;
}
for(int i = 1; i < obstacleGrid.size(); i++)
for(int j = 1; j < obstacleGrid[0].size(); j++)
{
if(obstacleGrid[i][j] == 0)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
return dp[obstacleGrid.size() - 1][obstacleGrid[0].size() - 1];
}
};
- 整数拆分
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n + 2, 0);
dp[1] = 1;
for(int i = 2; i <= n; i++)
{
for(int j = 1; j <= i - 1; j++)
{
dp[i] = max(dp[i], dp[i - j] * j);
dp[i]=max(dp[i], j * (i - j));
}
}
return dp[n];
}
};