算法系列15天速成——第十一天 树操作(上)
最近项目赶的紧,歇了一个星期没写博客了,趁周末继续写这个系列。
先前我们讲的都是“线性结构”,他的特征就是“一个节点最多有一个”前驱“和一个”后继“。那么我们今天讲的树会是怎样的呢?
我们可以对”线性结构“改造一下,变为”一个节点最多有一个"前驱“和”多个后继“。哈哈,这就是我们今天说的”树“。
一: 树
我们思维中的”树“就是一种枝繁叶茂的形象,那么数据结构中的”树“该是怎么样呢?对的,他是一种现实中倒立的树。

1:术语
其实树中有很多术语的,这个是我们学习树形结构必须掌握的。
<1> 父节点,子节点,兄弟节点
这个就比较简单了,B和C的父节点就是A,反过来说就是B和C是A的子节点。B和C就是兄弟节点。
<2> 结点的度
其实”度“就是”分支数“,比如A的分支数有两个“B和C",那么A的度为2。
<3> 树的度
看似比较莫名其妙吧,他和”结点的度“的区别就是,树的度讲究大局观,乃树中最大的结点度,其实也就是2。
<4> 叶结点,分支结点
叶结点就是既没有左孩子也没有右孩子结点,也就是结点度为0。分支节点也就是if的else的条件咯。
<5> 结点的层数
这个很简单,也就是树有几层。
<6> 有序树,无序树
有序树我们先前也用过,比如“堆”和“二叉排序树”,说明这种树是按照一定的规则进行排序的,else条件就是无序树。
<7> 森林
现实中,很多的树形成了森林,那在数据结构中,我们把上图的“A”节点砍掉,那么B,C子树合一起就是森林咯。
2: 树的表示
树这个结构的表示其实有很多种,常用的也就是“括号”表示法。
比如上面的树就可以表示为:(A(B(D),(E)),(C(F),(G)))
二: 二叉树
在我们项目开发中,很多地方都会用到树,但是多叉树的处理还是比较纠结的,所以俺们本着“大事化小,小事化了“的原则
把”多叉树“转化为”二叉树“,那么问题就简化了很多。
1: ”二叉树“和”树“有什么差异呢?
第一点: 树的度没有限制,而“二叉树”最多只能有两个,不然也就不叫二叉树了,哈哈。
第二点:树中的子树没有左右划分,很简单啊,找不到参照点,二叉树就有参照物咯。
2: 二叉树的类型
二叉树中有两种比较完美的类型,“完全二叉树”和“满二叉树”。
<1> 满二叉树
除叶子节点外,所有节点的度都为2,文章开头处的树就是这里的“满二叉树”。
<2> 完全二叉树
必须要满足两个条件就即可: 干掉最后一层,二叉树变为“满二叉树”。
最后一层的叶节点必须是“从左到右”依次排开。
我们干掉文章开头处的节点“F和”G",此时还是“完全二叉树”,但已经不是“满二叉树”了,你懂的。
3: 二叉树的性质
二叉树中有5点性质非常重要,也是俺们必须要记住的。
<1> 二叉树中,第i层的节点最多有2(i-1)个。
<2> 深度为k的二叉树最多有2k-1个节点。
<3> 二叉树中,叶子节点树为N1个,度为2的节点有N2个,那么N1=N2+1。
<4> 具有N个结点的二叉树深度为(Log2 N)+1层。
<5> N个结点的完全二叉树如何用顺序存储,对于其中的一个结点i,存在以下关系,
2*i是结点i的父结点。
i/2是结点i的左孩子。
(i/2)+1是结点i的右孩子。
4: 二叉树的顺序存储
同样的存储方式也有两种,“顺序存储”和“链式存储”。
<1> 顺序存储
说实话,树的存储用顺序结构比较少,因为从性质定理中我们都可以看出只限定为“完全二叉树”,那么如果二叉树不是
“完全二叉树”,那我们就麻烦了,必须将其转化为“完全二叉树”,将空的节点可以用“#”代替,图中也可看出,为了维护
性质定理5的要求,我们牺牲了两个”资源“的空间。

<2> 链式存储
上面也说了,顺序存储会造成资源的浪费,所以嘛,我们开发中用的比较多的还是“链式存储”,同样“链式存储”
也非常的形象,非常的合理。
一个结点存放着一个“左指针”和一个“右指针”,这就是二叉链表。
如何方便的查找到该结点的父结点,可以采用三叉链表。
5: 常用操作
一般也就是“添加结点“,“查找节点”,“计算深度”,“遍历结点”,“清空结点”
<1> 这里我们就用二叉链表来定义链式存储模型
1 #region 二叉链表存储结构
2 /// <summary>
3 /// 二叉链表存储结构
4 /// </summary>
5 /// <typeparam name="T"></typeparam>
6 public class ChainTree<T>
7 {
8 public T data;
9
10 public ChainTree<T> left;
11
12 public ChainTree<T> right;
13 }
14 #endregion
<2> 添加结点
要添加结点,我们就要找到添加结点的父结点,并且根据指示插入到父结点中指定左结点或者右结点。
1 #region 将指定节点插入到二叉树中
2 /// <summary>
3 /// 将指定节点插入到二叉树中
4 /// </summary>
5 /// <typeparam name="T"></typeparam>
6 /// <param name="tree"></param>
7 /// <param name="node"></param>
8 /// <param name="direction">插入做左是右</param>
9 /// <returns></returns>
10 public ChainTree<T> BinTreeAddNode<T>(ChainTree<T> tree, ChainTree<T> node, T data, Direction direction)
11 {
12 if (tree == null)
13 return null;
14
15 if (tree.data.Equals(data))
16 {
17 switch (direction)
18 {
19 case Direction.Left:
20 if (tree.left != null)
21 throw new Exception("树的左节点不为空,不能插入");
22 else
23 tree.left = node;
24
25 break;
26 case Direction.Right:
27 if (tree.right != null)
28 throw new Exception("树的右节点不为空,不能插入");
29 else
30 tree.right = node;
31
32 break;
33 }
34 }
35
36 BinTreeAddNode(tree.left, node, data, direction);
37 BinTreeAddNode(tree.right, node, data, direction);
38
39 return tree;
40 }
41 #endregion
<3> 查找节点
二叉树中到处都散发着递归思想,很能锻炼一下我们对递归的认识,同样查找也是用到了递归思想。
1 #region 在二叉树中查找指定的key
2 /// <summary>
3 ///在二叉树中查找指定的key
4 /// </summary>
5 /// <typeparam name="T"></typeparam>
6 /// <param name="tree"></param>
7 /// <param name="data"></param>
8 /// <returns></returns>
9 public ChainTree<T> BinTreeFind<T>(ChainTree<T> tree, T data)
10 {
11 if (tree == null)
12 return null;
13
14 if (tree.data.Equals(data))
15 return tree;
16
17 return BinTreeFind(tree, data);
18 }
19 #endregion
<4> 计算深度
这个问题纠结了我二个多小时,原因在于没有深刻的体会到递归,其实主要思想就是递归左子树和右子树,然后得出较大的一个。
1 #region 获取二叉树的深度
2 /// <summary>
3 /// 获取二叉树的深度
4 /// </summary>
5 /// <typeparam name="T"></typeparam>
6 /// <param name="tree"></param>
7 /// <returns></returns>
8 public int BinTreeLen<T>(ChainTree<T> tree)
9 {
10 int leftLength;
11 int rightLength;
12
13 if (tree == null)
14 return 0;
15
16 //递归左子树的深度
17 leftLength = BinTreeLen(tree.left);
18
19 //递归右子书的深度
20 rightLength = BinTreeLen(tree.right);
21
22 if (leftLength > rightLength)
23 return leftLength + 1;
24 else
25 return rightLength + 1;
26 }
27 #endregion
<5> 遍历结点
二叉树中遍历节点的方法还是比较多的,有“先序”,“中序”,“后序”,“按层”,其实这些东西只可意会,不可言传,真的很难在口头
上说清楚,需要反复的体会递归思想。
先序:先访问根,然后递归访问左子树,最后递归右子树。(DLR模式)
中序:先递归访问左子树,在访问根,最后递归右子树。(LDR模式)
后序:先递归访问左子树,然后递归访问右子树,最后访问根。(LRD模式)
按层:这个比较简单,从上到下,从左到右的遍历节点。
1 #region 二叉树的先序遍历
2 /// <summary>
3 /// 二叉树的先序遍历
4 /// </summary>
5 /// <typeparam name="T"></typeparam>
6 /// <param name="tree"></param>
7 public void BinTree_DLR<T>(ChainTree<T> tree)
8 {
9 if (tree == null)
10 return;
11
12 //先输出根元素
13 Console.Write(tree.data + "\t");
14
15 //然后遍历左子树
16 BinTree_DLR(tree.left);
17
18 //最后遍历右子树
19 BinTree_DLR(tree.right);
20 }
21 #endregion
22
23 #region 二叉树的中序遍历
24 /// <summary>
25 /// 二叉树的中序遍历
26 /// </summary>
27 /// <typeparam name="T"></typeparam>
28 /// <param name="tree"></param>
29 public void BinTree_LDR<T>(ChainTree<T> tree)
30 {
31 if (tree == null)
32 return;
33
34 //优先遍历左子树
35 BinTree_LDR(tree.left);
36
37 //然后输出节点
38 Console.Write(tree.data + "\t");
39
40 //最后遍历右子树
41 BinTree_LDR(tree.right);
42 }
43 #endregion
44
45 #region 二叉树的后序遍历
46 /// <summary>
47 /// 二叉树的后序遍历
48 /// </summary>
49 /// <typeparam name="T"></typeparam>
50 /// <param name="tree"></param>
51 public void BinTree_LRD<T>(ChainTree<T> tree)
52 {
53 if (tree == null)
54 return;
55
56 //优先遍历左子树
57 BinTree_LRD(tree.left);
58
59 //然后遍历右子树
60 BinTree_LRD(tree.right);
61
62 //最后输出节点元素
63 Console.Write(tree.data + "\t");
64 }
65 #endregion
66
67 #region 二叉树的按层遍历
68 /// <summary>
69 /// 二叉树的按层遍历
70 /// </summary>
71 /// <typeparam name="T"></typeparam>
72 /// <param name="tree"></param>
73 public void BinTree_Level<T>(ChainTree<T> tree)
74 {
75 if (tree == null)
76 return;
77
78 //申请保存空间
79 ChainTree<T>[] treeList = new ChainTree<T>[Length];
80
81 int head = 0;
82 int tail = 0;
83
84 //存放数组
85 treeList[tail] = tree;
86
87 //循环链中计算tail位置
88 tail = (tail + 1) % Length;
89
90 while (head != tail)
91 {
92 var tempNode = treeList[head];
93
94 head = (head + 1) % Length;
95
96 //输出节点
97 Console.Write(tempNode.data + "\t");
98
99 //如果左子树不为空,则将左子树存于数组的tail位置
100 if (tempNode.left != null)
101 {
102 treeList[tail] = tempNode.left;
103
104 tail = (tail + 1) % Length;
105 }
106
107 //如果右子树不为空,则将右子树存于数组的tail位置
108 if (tempNode.right != null)
109 {
110 treeList[tail] = tempNode.right;
111
112 tail = (tail + 1) % Length;
113 }
114 }
115 }
116 #endregion
<6> 清空二叉树
虽然C#里面有GC,但是我们能自己释放的就不麻烦GC了,同样清空二叉树节点,我们用到了递归,说实话,这次练习让我喜欢
上的递归,虽然XXX的情况下,递归的不是很好,但是递归还是很强大的。
1 #region 清空二叉树
2 /// <summary>
3 /// 清空二叉树
4 /// </summary>
5 /// <typeparam name="T"></typeparam>
6 /// <param name="tree"></param>
7 public void BinTreeClear<T>(ChainTree<T> tree)
8 {
9 //递的结束点,归的起始点
10 if (tree == null)
11 return;
12
13 BinTreeClear(tree.left);
14 BinTreeClear(tree.right);
15
16 //在归的过程中,释放当前节点的数据空间
17 tree = null;
18 }
19 #endregion
最后上一下总的代码
View Code
我们把文章开头的“二叉树”的节点输入到我们的结构中,看看遍历效果咋样。


浙公网安备 33010602011771号