极限
添项减项法
\[\lim_{x\to 0}\frac{(1+\alpha x)^m(1+\beta x)^n-1}{x}\\
=\lim_{x\to 0}(1+\alpha x)^m\frac{(1+\beta x)^n-1}{x}+\lim_{x\to 0}\frac{(1+\alpha x)^m-1}{x}\\
\stackrel{\text{l'H}}{=} n\beta+m\alpha
\]
\[\lim_{x\to 0} \frac{1-\prod_{i=1}^{n} \cos ix}{x^2}=\\
\lim_{x\to 0} \frac{(1-\cos x)+(\cos x-\prod_{i=1}^{n} \cos ix)}{x^2}, (1-\cos x\sim \frac{x^2}{2})\\
=\frac{1}{2}+\lim_{x\to 0} \cos x\frac{1-\prod_{i=2}^{n} \cos ix}{x^2}\\
=\frac{1}{2}+\lim_{x\to 0} \frac{1-\prod_{i=2}^{n} \cos ix}{x^2}, (1-\cos ix\sim \frac{(ix)^2}{2})\\
=\sum_{i=1}^{n} \frac{i^2}{2}=\frac{n(n+1)(2n+1)}{12}
\]
等价无穷小
\[\lim_{x\to 0}\frac{(1+\alpha x)^m(1+\beta x)^n-1}{x}\\
\stackrel{x\to 0, \ln x \sim x-1}{=}\lim_{x\to 0}\frac{\ln[(1+\alpha x)^m(1+\beta x)^n]}{x}\\
=\lim_{x\to 0}\frac{m\ln(1+\alpha x)}{x}+\lim_{x\to 0}\frac{n\ln(1+\beta x)}{x}\\
\stackrel{x\to 0, \ln x \sim x-1}{=}m\alpha +n\beta
\]
\[\lim_{x\to 0} \frac{1-\prod_{i=1}^{n} \cos^{\frac{1}{i}} ix}{x^2}\\
\stackrel{x\to 0, -\ln x \sim 1-x}{=}-\lim_{x\to 0} \frac{\sum_{i=1}^{n} \ln(\cos^{\frac{1}{i}} ix)}{x^2}\\
=-\sum_{i=1}^{n} \lim_{x\to 0} \frac{\ln(\cos ix)}{ix^2}\\
\stackrel{\text{l'H}}{=}-\sum_{i=1}^{n} \lim_{x\to 0}\frac{-\sin ix}{2ix\cos ix}\\
=\sum_{i=1}^{n} \frac{1}{2}=\frac{n}{2}
\]
吸收性
\[\lim_{x\to 0} \frac{(3+2\tan x)^x-3^x}{3\sin^2 x+x^3\cos \frac{1}{x}}
\]
考虑 \(\sin ^2 x \sim x^2, x^3\cos \frac{1}{x} \in [-x^3, x^3 ] \sim x^3\),故分母吸收为 \(O(x^2)\) 量。
\[=\lim_{x\to 0} \frac{(3+2\tan x)^x-3^x}{3\sin^2 x}\\
=\lim_{x\to 0} \frac{3^x[(1+\frac{2\tan x}{3})^x-1]}{3\sin^2 x}\\
=\frac{1}{3}\lim_{x\to 0} \frac{\ln(1+\frac{2\tan x}{3})}{x}\\
=\frac{1}{3}\lim_{x\to 0} \frac{\frac{2\tan x}{3}}{x}=\frac{2}{9}
\]
复杂替换
设 \(f(x), g(x)\) 在 \(U(0, \epsilon)\) 有定义,对 \(\forall x\in U, f(x)\ne g(x)\),且 \(\lim_{x\to 0} f(x)=\lim_{y\to 0} g(x)=a>0\)。
则:
\[\lim_{x\to 0} \frac{[f(x)]^{g(x)}-[g(x)]^{g(x)}}{f(x)-g(x)}=a^a
\]
证明:
\[\operatorname{LHS}=\lim_{x\to 0} [g(x)]^{g(x)}\times \frac{[\frac{f(x)}{g(x)}]^{g(x)}-1}{f(x)-g(x)}
\]
注意 \([\frac{f(x)}{g(x)}]^{g(x)}-1\) 是一个无穷小
考虑记 \(u=[\frac{f(x)}{g(x)}]^{g(x)} \to 1, \ln u =g(x) \ln(\frac{f(x)}{g(x)})\),则由 \(u-1\sim \ln u\) 得
\[\operatorname{LHS}=\lim_{x\to 0} [g(x)]^{g(x)}\times \frac{g(x) \ln(\frac{f(x)}{g(x)})}{f(x)-g(x)}\\
=\operatorname{LHS}=a^{a+1}\lim_{x\to 0} \times \frac{\ln(\frac{f(x)}{g(x)})}{f(x)-g(x)}
\]
观察到下面相减的形式,于是考虑 \(v=\frac{f(x)}{g(x)}\to 1, \ln v\sim v-1\),
\[\operatorname{LHS}=a^{a+1}\lim_{x\to 0} \times \frac{\frac{f(x)}{g(x)}-1}{f(x)-g(x)}=a^a
\]
\(Stolz\) 定理
定理一(类型一)
设数列 \(a_n, b_n\) 满足
- \(b_n\) 严格单调递增
- \(\lim_{n\to \infty } b_n =+\infty\)
则
\[\lim_{n\to \infty } \frac{a_{n+1}-a_{n}}{b_{n+1}-b_n}=A \Rightarrow \lim_{n\to \infty} \frac{a_n}{b_n}=A
\]
其中 \(A\) 可为有限数,或 \(+\infty, -\infty\)。
定理二(类型二)
设数列 \(a_n, b_n\) 满足
- \(b_n\) 严格单调递增,且 \(n\) 足够大时,\(b_n\) 恒正或恒负
- \(\lim_{n\to \infty } \frac{b_n+b_{n-1}}{b_n-b_{n-1}} =L\)
- \(\lim_{n\to \infty } \frac{a_n}{b_n}=A\)
则
\[\lim_{n\to \infty } \frac{a_n-a_{n-1}}{b_n-b_{n-1}} =A
\]
定理三(类型三)
设数列 \(a_n, b_n\) 满足
- \(a_n\) 严格单调递增,且 \(n\) 足够大时,\(a_n\) 恒正或恒负
- \(\lim_{n\to \infty } \frac{a_n+a_{n-1}}{a_n-a_{n-1}} =L\)
- \(\lim_{n\to \infty } \frac{a_n}{b_n}=\infty\)
则
\[\lim_{n\to \infty } \frac{a_n-a_{n-1}}{b_n-b_{n-1}} =\infty
\]
模拟一
\[\lim_{x\to +\infty} x^2[(\frac{3x^3-7}{3x^3-x})^{\frac{1}{5}}-x\sin \frac{1}{x}]
\]
考察 Taylor 公式的应用
对于多项式,我们尽量化简为 \((1+x)^{\alpha }=\sum_{i=0}^{\infty}\binom{\alpha}{i}x^i\) 的形式
\[(\frac{3x^3-7}{3x^3-x})^{\frac{1}{5}}\\
=(1-\frac{7}{3x^3})^{\frac{1}{5}}(1-\frac{1}{3x^2})^{-\frac{1}{5}}\\
=(1-\frac{7}{15}x^{-3}+o(x^{-5}))(1+\frac{1}{15}x^{-2}+\frac{1}{75}x^{-4}+o(x^{-5})))\\
=1+\frac{1}{15}x^{-2}-\frac{7}{15}x^{-3}+\frac{1}{75}x^{-4}+o(x^{-5})\]
\[x\sin \frac{1}{x}=x(\frac{1}{x}-\frac{1}{3! x^3}+\frac{1}{5!x^5}+o(x^{-6}))=1-\frac{1}{6}x^{-2}+\frac{1}{120}x^{-4}+o(x^{-5})
\]
故原式
\[=\lim_{x\to +\infty} x^2[(1+\frac{1}{15}x^{-2}-\frac{7}{15}x^{-3}+\frac{1}{75}x^{-4})-(1-\frac{1}{6}x^{-2}+\frac{1}{120}x^{-4})+o(x^{-5})]=\frac{7}{30}
\]
设
\[f(x)=\begin{array}{l}
\left\{\begin{matrix}
x^{3}\sin(\ln|x|), x\ne 0\\
0, x=0\
\end{matrix}\right.
\end{array} \]
证明 \(f(x)\) 在 \(x=0\) 处二阶可导,并求 \(f'(0), f''(0)\)
先证原函数连续,由
\[0=\lim_{x\to 0} -|x|^3 \le\lim_{x\to 0} f(x)=x^3\sin(\ln|x|)\le \lim_{x\to 0} |x|^3=0
\]
得证。后求 \(f'(x)\)。
\[f'(x)=\begin{array}{l}
\left\{\begin{matrix}
3x^{2}\sin(\ln|x|)+x|x|\cos(\ln|x|), x\ne 0\\
\lim_{x\to}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0} x^2\sin(\ln |x|)=0, x=0\
\end{matrix}\right.
\end{array} \]
同理证 \(f'(x)\) 在 \(x=0\) 连续,
\[f''(x)=\lim_{x\to 0}\frac{f'(x)-f'(0)}{x-0}=\lim_{x\to 0} 3x\sin(\ln|x|)+|x|\cos(\ln|x|)=0
\]
设 \(f(x)\) 在 \([x_0-a, x_0+a]\) 二阶可微,\(f''(x)\ge 0\),证:
\[\frac{1}{2a} \int_{x_0-a}^{x_0+a} f(x)\mathrm{d}x \ge f(x_0)
\]
容易转化为
\[\int_{x_0-a}^{x_0+a} f(x)-f(x_0)\mathrm{d}x \ge 0\\
\Rightarrow \int_{0}^{a} [f(x_0+a)-f(x_0-a)-2f(x_0)]\mathrm{d}x \ge 0
\]
由 \(f(x)\) 凹性得证。
求常系数线性微分方程通解
\[y'''+3y''+y'-5y=0
\]
\[y'''+3y''+y'-5y=2x-7+6e^{-2x}\sin x
\]
由
\[\lambda^3+3\lambda^2+\lambda-5=0 \to (\lambda-1)(\lambda^2+4\lambda+5)=0
\]
得 \(\lambda_1=1, \lambda_2=-2+i, \lambda_3=-2-i\)。
则方程①的通解形式:
\[y=C_1e^x+e^{-2x}(C_2\cos x+C_3\sin x)
\]
\(0\) 不是特征根,\(-2\pm i\) 是特征根,待定系数故得方程②的特解
\[y^*=-\frac{2}{5}x+\frac{33}{25}+xe^{-2x}(\frac{9}{10}\cos x-\frac{3}{10}\sin x)
\]
\(f(x)\) 在 \([0, 1]\) 连续,\((0, 1)\) 可导,\(f(0)=1, f(1)=0\)
\(\exists \eta \in(0, 1), f(\eta)=\eta\)
\(\exists \eta_1\ne \eta_2 \in(0, 1), f'(\eta_1)f'(\eta_2)=1\)
\(\exists \eta_1\ne \eta_2 \in(0, 1), \frac{1}{f'(\eta_1)}+\frac{2025}{f'(\eta_2)}=-2026\)
第一问可构造 \(g(x)==f(x)-x\) 由零点存在定理解得。
第二问,考虑 Lagrange 定理,设满足第一问的某个 \(\eta_0\),存在 \(\xi_1 \in(0, \eta_0), \xi_2(\eta_0, 1)\) 满足:
\[f'(\xi_1)=\frac{f(\eta_0)-f(0)}{\eta_0-0}=\frac{\eta_0-1}{\eta_0}, f'(\xi_2)=\frac{-\eta_0}{1-\eta_0}
\]
取二者即可。
第三问,考虑将在第二问取得的结果一般化,对于 \(t\in (0, 1), \xi_1(t)\in(0, t), \xi_2(t)\in(t, 1)\)
\[f'(\xi_1(t))=\frac{f(t)-1}{t}, f'(\xi_2(t))=\frac{f(t)}{t-1}
\]
设 \(g(t)=\frac{1}{f'(\xi_1(t))}+\frac{2025}{f'(\xi_2(t))}+2026=\frac{t}{f(t)-1}+\frac{2025(t-1)}{f(t)}+2026\),考察 \(g(t)\) 在端点的表现即可。
\[\int_0^{\frac{\pi}{2}} \frac{\pi+\sin x}{1+\cos x} \mathrm{d}x
\]
\[=\int_0^{\frac{\pi}{2}} \frac{\pi}{1+\cos x} \mathrm{d}x+\int_0^{\frac{\pi}{2}} \frac{\sin x}{1+\cos x} \mathrm{d}x\\
=\int_0^{\frac{\pi}{2}} \frac{\pi}{2\cos^2 \frac{x}{2}} \mathrm{d}x-\int_0^{\frac{\pi}{2}} \frac{\mathrm{d} \cos x}{1+\cos x} \\
=\pi\int_0^{\frac{\pi}{4}} \sec^2 x\mathrm{d}x-\int_1^{0} \frac{\mathrm{d}x}{1+x} =\pi+\ln 2\\
\]
求
\[f(x)=\int_{1}^{x^2} (x^2-t)e^{-t^2}\mathrm{d}t
\]
单调区间和极值
依下定理做即可
含参变量积分求导
\[\frac{\mathrm{d}}{\mathrm{d}x}\int_{u(x)}^{v(x)} g(x, t)\mathrm{dt}=g(x, v(x))\times v'(x)-g(x, u(x))\times u'(x)+\int_{u(x)}^{v(x)} \frac{\partial g(x, t)}{\partial x} \mathrm{d}t
\]
\[\lim_{x\to 0} \frac{\int_0^x tf(x-t)\mathrm{d}t}{x\int_0^x f(x-t)\mathrm{d}t}
\]
对于分母:
\[\int_0^x f(x-t)\mathrm{d}t=\int_0^x f(t)\mathrm{d}t=f(0)(x-0)+o(x), (t\to 0, f(t)=f(0)+o(1))
\]
对于分子:
\[\int_0^x tf(x-t)\mathrm{d}t=\int_0^x (x-t)f(t)\mathrm{d}t=\int_0^x xf(t)\mathrm{d}t-\int_0^x tf(t)\mathrm{d}t\\
=x(f(0)(x-0)+o(x))-\int_0^x t[f(0)+o(1)]\mathrm{d}t\\
=x^2f(0)-(\frac{x^2f(0)}{2}+o(x^2))=\frac{x^2f(0)}{2}+o(x^2)
\]
则原极限
\[=\lim_{x\to 0} \frac{\frac{x^2f(0)}{2}+o(x^2)}{x[f(0)x+o(x)]}=\frac{1}{2}
\]
\(\varphi(x)\) 连续可导,解方程
\[\varphi(x)\cos x +2\int_0^{x} \varphi(t)\sin t \mathrm{d}t=x+1
\]
条件两边对 \(x\) 求导,
\[\varphi'(x)-\varphi(x)\sin x+2\varphi(x)\sin x =1\\
\Rightarrow \varphi'(x)+\tan(x)\varphi(x)=\sec(x)
\]
易得
\[\varphi(x)=\sin x+C\cos x
\]
回代原条件
\[\sin x \cos x+C\cos^2 x+2\int_0^x (\sin^2 t+C\sin t\cos t)\mathrm{d}t=x+1
\]
整理得 \(C=1\)
模拟二
\[\int_{0}^{\infty} \frac{\mathrm{d}x}{1+x^3}
\]
相当于 \(n\to \infty\) 求
\[\int_{0}^{n} \frac{\mathrm{d}x}{1+x^3}\\
=\frac{1}{3}[\int_{0}^{n} \frac{\mathrm{d}x}{1+x}+\int_{0}^{n} \frac{(-x+2)\mathrm{d}x}{(x-\frac{1}{2})^2+\frac{3}{4}}]
\]
第一部分:
\[\int_{0}^{n} \frac{\mathrm{d}x}{1+x}\\
=\ln(1+x)|^{n}_0=\ln(n+1)\sim \ln n
\]
第二部分:
\[I_1=\int_{0}^{n} \frac{-(x-\frac{1}{2})\mathrm{d}x}{(x-\frac{1}{2})^2+\frac{3}{4}}\\
=-\frac{1}{2}\int_{-\frac{1}{2}}^{n-\frac{1}{2}} \frac{\mathrm{d}x^2}{x^2+\frac{3}{4}}\\
\ne-\frac{1}{2} \ln |(x^2+\frac{3}{4})|^{n-\frac{1}{2}}_{\frac{1}{2}}-\ln |(x^2+\frac{3}{4})|^{\frac{1}{2}}_{0}\\
=-\frac{1}{2} \ln |(x^2+\frac{3}{4})|^{n-\frac{1}{2}}_{\frac{1}{2}}\sim-\ln n
\]
\[I_2=\frac{3}{2}\int_{-\frac{1}{2}}^{n-\frac{1}{2}} \frac{\mathrm{d}x}{x^2+\frac{3}{4}}\\
=\frac{3}{2}\times \frac{2}{\sqrt{3}}\arctan (\frac{2}{\sqrt{3}} x)|^{n-\frac{1}{2}}_{-\frac{1}{2}}\\=\sqrt{3}(\frac{\pi}{2}-\arctan (-\frac{1}{\sqrt{3}}))=\frac{2\sqrt{3}\pi}{3}
\]
综上得原无穷积分结果为 \(\frac{2\sqrt{3}\pi}{9}\)
\(f(x)\in C^2 [a, b], f(a)=f(b)=0\),证明:
\[\int_a^b f(x)\mathrm{d}x=\frac{1}{2}\int_a^b f''(x)(x-a)(x-b)\mathrm{d}x
\]
\[|\int_a^b f(x)\mathrm{d}x|=\frac{(b-a)^2}{12}\max_{a}^{b} |f''(x)|
\]
\[\int_a^b f''(x)(x-a)(x-b)\mathrm{d}x\\
=\int_a^b (x-a)(x-b)\mathrm{d}(f'(x))\\
=f'(x)(x-a)(x-b)|_a^b-\int_a^b f'(x)\mathrm{d}((x-a)(x-b))\\
=-\int_a^b (2x-a-b)\mathrm{d} (f(x))\\
=-[f(x)(2x-a-b)|_a^b-2\int_a^b f(x)\mathrm{d} x]=2\int_a^b f(x)\mathrm{d} x
\]
第二问,考虑 \(\int (x-a)(x-b)\mathrm{d}x=\frac{1}{3}x^3-\frac{(a+b)}{2}x^2+abx\)
\[|\int_a^b f(x)\mathrm{d}x|=|\frac{1}{2}\int_a^b f''(x)(x-a)(x-b)\mathrm{d}x|\\
\le |\frac{1}{2}\int_a^b \max_{a}^{b} |f''(x)| (x-a)(x-b)\mathrm{d}x|\\
=\frac{1}{2}|(\frac{1}{3}x^3-\frac{(a+b)}{2}x^2+abx)|^b_a|\times \max_{a}^{b} |f''(x)|\\
=\frac{(b-a)^2}{12}\max_{a}^{b} |f''(x)|
\]
模拟三
计算
\[I_n=\int_1^{\infty} \frac{\mathrm{d}x}{\prod_{i=0}^n (x+i)}, n\ge 2
\]
考虑部分分式列项处理,记生成函数 \(\frac{1}{\prod_{i=0}^n (x+i)}=G(x)=\sum_{i=0}^{n} \frac{a_i}{x+i}\),考虑求 \(a_k\),等式两边同乘 \(x+k\) 得:
\[\frac{1}{\prod_{i=0, i\ne k}^n (x+i)}=G(x)(x+k)=a_k+\sum_{i=0, i\ne k}^{n} \frac{a_i(x+k)}{x+i}
\]
代入 \(x=-k\),得 \(a_k=\frac{1}{\prod_{i=0, i\ne k}^n (-k+i)}=\frac{(-1)^k}{k!(n-k)!}\),故
\[I_n=\int_1^{\infty} \frac{\mathrm{d}x}{\prod_{i=0}^n (x+i)}\\
=I_n=\int_1^{\infty} G(x)\mathrm{d}x\\
=\sum_{i=0}^{n} a_i \ln |x+i| |_1^{\infty}\]
取 \(\infty =N\),则 \(\ln (N+i) \sim \ln N\)
\[I_n=\int_1^{N} \frac{\mathrm{d}x}{\prod_{i=0}^n (x+i)}\\
=(\ln N\sum_{i=0}^{n} a_i)-\sum_{i=0}^n a_i \ln(1+i)\]
显然 \(\sum_{i=0}^{n} a_i=\sum_{i=0}^n \frac{(-1)^k}{k!(n-k)!}=\frac{\sum_{i=0}^n \binom{n}{i}(-1)^i}{n!}=0\),于是
\[I_n=-\sum_{i=0}^n a_i \ln(1+i)
\]
分析积分敛散性
\[\int_{0}^{\infty} \frac{\arctan^q x}{x^p}, (p, q>0)
\]
上下界都是无界点,分开处理。
\(x\to 0\) 时,\(\arctan^q x \to x\),由
\[\int_0^{\delta} x^{\alpha} \mathrm{d}x
\]
当且仅当 \(\alpha >-1\) 收敛,故 \(q-p>-1\) 是原积分收敛的一个条件。
\(x\to \infty\) 时,\(\arctan^q x \to \frac{\pi}{2}\) 为常数,由
\[\int_{\delta}^{\infty} x^{\alpha} \mathrm{d}x
\]
当且仅当 \(\alpha < -1\) 收敛,故 \(-p<-1\) 是原积分收敛的一个条件。
得积分收敛当且仅当 \(q+1>p>1\)。
模拟四
求积分:
\[I=\int_0^{+\infty} e^{-x^2} \mathrm{d}x
\]
考虑双重积分,
\[x=f(z, w), y=g(z, w), J=\begin{pmatrix}
\frac{\partial x}{\partial z} & \frac{\partial x}{\partial w}\\
\frac{\partial y}{\partial z} & \frac{\partial y}{\partial w}
\end{pmatrix}\\
\to \mathrm{d}x\mathrm{d} y=\det(J)\mathrm{d} z\mathrm{d} w
\]
这一结论常用于极坐标换元,若 \(x=r\cos \theta, y=r\sin \theta, \det(J)=r\cos^2 \theta +r \sin^2 \theta=r, \mathrm{d}x\mathrm{d} y=r\mathrm{d} r\mathrm{d} \theta\)
\[(2I)^2=\int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x\int_{-\infty}^{+\infty} e^{-y^2} \mathrm{d}y\\
=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-(x^2+y^2)} \mathrm{d}x\mathrm{d}y\\
=\int_{0}^{2\pi} \int_{0}^{+\infty} e^{-r^2} r\mathrm{d}r\mathrm{d}\theta\\
=(\theta\int_{0}^{+\infty} e^{-r^2} r\mathrm{d}r)|^{2\pi}_0\\
=(\frac{\theta}{2}\int_{0}^{+\infty} e^{-r^2} \mathrm{d}r^2)|^{2\pi}_0\\
=\pi
\]