ForkJoin
分支合并
什么是ForkJoin
ForkJoin在jdk1.7发行,并行执行任务,提高效率,适用于大数据量!
大数据:MapReduce(把大任务拆分为小任务)
ForkJoin特点:工作窃取
这个里面维护的都是双端队列

ForkJoin使用


计算类
/*
求个计算的任务!
3000 6000(ForkJoin) 9000(Stream并行流)
如何使用ForkJoin
1.ForkJoinPool 通过它来执行
2.计算任务 ForkJoinPool.execute(ForkJoinTask<?> task)
3.计算类要继承 ForkJoinTask
*/
public class ForkJoinDemo extends RecursiveTask<Long> {
private Long start;//1
private Long end;//1000000000
// 临界值
private Long temp = 10000L;
public ForkJoinDemo(Long start, Long end) {
this.start = start;
this.end = end;
}
// 计算方法
@Override
protected Long compute() {
if ((end - start) < temp) {
Long sum = 0L;
for (Long i = start; i <= end; i++) {
sum += i;
}
return sum;
} else {//ForkJoin 递归
// 分支合并计算
Long middle = (start + end) / 2;//中间值
ForkJoinDemo task1 = new ForkJoinDemo(start, middle);
task1.fork();//拆分任务,把任务压入线程队列
ForkJoinDemo task2 = new ForkJoinDemo(middle + 1, end);
task2.fork();//拆分任务,把任务压入线程队列
return task1.join() + task2.join();
}
}
}
测试类
/*
同一个任务,别人效率高你几十倍!
*/
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
// test1();//sum=500000000500000000 时间:12904
// test2();//sum=500000000500000000 时间:9484
test3();//sum=500000000500000000 时间:193
}
// 普通程序员
public static void test1() {
long start = System.currentTimeMillis();
Long sum = 0L;
for (Long i = 1L; i <= 10_0000_0000; i++) {
sum += i;
}
long end = System.currentTimeMillis();
System.out.println("sum=" + sum + " 时间:" + (end - start));
}
// 会使用ForkJoin
public static void test2() throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis();
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoinDemo(0L, 10_0000_0000L);
ForkJoinTask<Long> submit = forkJoinPool.submit(task);//提交
Long sum = submit.get();
long end = System.currentTimeMillis();
System.out.println("sum=" + sum + " 时间:" + (end - start));
}
// nb
public static void test3() {
long start = System.currentTimeMillis();
// Stream并行流 () (]
long sum = LongStream
.rangeClosed(0L, 10_0000_0000L)
.parallel()
.reduce(0, Long::sum);
long end = System.currentTimeMillis();
System.out.println("sum=" + sum + " 时间:" + (end - start));
}
}

浙公网安备 33010602011771号