4 - LU分解、转置与置换

布布的线代笔记 4

 

1. A = LU 分解

 

将矩阵 \(A\) 分解为 \(2,~3\) 个特殊矩阵的乘积,以降低运算复杂度:

消元法有 \(EA = U\)(暂时不考虑置换),用 \(E^{-1}\) 可以将 \(U\) 还原为 \(A\)

\[E^{-1}U=A \]

定义分解因子 \(L = E^{-1}\)

\[A = LU \\~\\ L:下三角矩阵~~~U:上三角矩阵 \]

二阶方阵:

\[\begin{aligned} e.g.~~A = \begin{bmatrix} 2 & 1 \\ 6 & 8 \end{bmatrix}~~~E_{21}A &= \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 5 \end{bmatrix}_{U} \\~\\ E_{21}^{-1}U &= \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 6 & 8 \end{bmatrix}_A \end{aligned} \]

三阶方阵:

\[E_{32} E_{31} E_{21} A = U \\~\\ A = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}U~~~L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} \]

 

\[e.g.~~A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \stackrel{R_2-\frac{1}{2}R_1}{\longrightarrow} \begin{bmatrix} 2 & 1 & 0 \\ 0 & \cfrac{3}{2} & 1 \\ 0 & 1 & 2 \end{bmatrix} \stackrel{R_3-\frac{2}{3}R_2}{\longrightarrow} \begin{bmatrix} 2 & 1 & 0 \\ 0 & \cfrac{3}{2} & 1 \\ 0 & 0 & \cfrac{4}{3} \end{bmatrix} = U \\~\\ 将运算反过来填进去 \Rightarrow ~L = \begin{bmatrix} 1 & 0 & 0 \\ \cfrac{1}{2} & 1 & 0 \\ 0 & \cfrac{2}{3} & 1 \end{bmatrix} \]

 

\[\begin{aligned} e.g.~~A = & \begin{bmatrix} 1 & 0 & 2 \\ 3 & 2 & 6 \\ 2 & 2 & 1 \end{bmatrix} \to ~U = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \Rightarrow ~L = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \\~\\ &R_2-3R_1 \\ &R_3-2R_1 \to \begin{bmatrix} ~0 & 2 & -3~ \end{bmatrix} \\ &R_3-R_2 \end{aligned} \]

 
为什么可以之间将消元的系数填入对应的位置?
 

回想消元法的过程,消到第 \(i\) 行的时候,前 \(i-1\) 行已经消成上三角矩阵里的样子,这时候从第 \(i\) 行减去消好的行,减去的是 \(U\) 里的元素,而不是 \(A\) 里的,我们将消元系数填入 \(L\)(用下角标 \(Ri\) 表示第 \(i\) 行):

\[i.e.~~ U_{R3} = A_{R3}-l_{31}U_{R1}-l_{32}U_{R2} ~\Rightarrow ~ A_{R3} = l_{31}U_{R1}+l_{32}U_{R2} + U_{R3} \\ L_{R3} = [~l_{31}~~l_{32}~~1~] \]

复原的时候第 \(i\) 行可以直接加上 \(U\) 里的前 \(i-1\) 行的元素,也就是直接对 \(U\) 操作:

\[i.e.~~A_{R3} = L_{R3} U ~\Rightarrow~ A_{Ri} = (LU)_{Ri} = L_{Ri}U \]

 

\(e.g.~~\)\(A=LU\) 分解表示四阶帕斯卡矩阵(由杨辉三角组成左上三角)

\[\begin{aligned} pascal(4) = \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix} \stackrel{l_{21}=1,~l_{31}=1,~l_{41}=1}{\longrightarrow} & \begin{bmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 2 & 3 \\ 0 & 2 & 5 & 9 \\ 0 & 3 & 9 & 19 \end{bmatrix} \\~\\ \stackrel{l_{32}=2,~l_{42}=3}{\longrightarrow} \begin{bmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 3 & 10 \end{bmatrix} \stackrel{l_{43}=3}{\longrightarrow} ~U = & \begin{bmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\~\\ L = \begin{bmatrix} 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{bmatrix}~~~~~pascal(4)= &~~LU \end{aligned} \]

 

2. A= LDU 分解

 

\(A = LU\)\(L\) 是对角元为 \(1\) 的下三角矩阵,\(U\) 是上三角矩阵,但对角元不是 \(1\)

因为「优妮前辈」想要更平衡的写法,所以将 \(U\) 继续分解(优衣=D 优妮)

\[U_1 = DU_2 \\ \begin{bmatrix} u_{11} & u_{12} & ... & ... \\ & u_{22} & ... & ... \\ & & ... & ... \\ & & & u_{nn} \end{bmatrix}_{U_{1}} = \begin{bmatrix} u_{11} & & & \\ & u_{22} & & \\ & & ... & \\ & & & u_{nn} \end{bmatrix}_D \begin{bmatrix} 1 & \cfrac{u_{12}}{u_{11}} & ... & ... \\ & 1 & \cfrac{u_{23}}{u_{22}} & ... \\ & & 1 & ... \\ & & & 1 \end{bmatrix}_{U_{1}} \]

 

\[e.g.~~ \begin{bmatrix} 2 & 1 \\ 6 & 8 \end{bmatrix}_{A} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}_{L} \begin{bmatrix} 2 & 1 \\ 0 & 5 \end{bmatrix}_{U_{1}} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}_L \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}_{D} \begin{bmatrix} 1 & \cfrac{1}{2} \\ 0 & 1 \end{bmatrix}_{U_{2}} \]

 

3. 解 Ax = b

 

\[A \boldsymbol x=\boldsymbol b ~\Leftrightarrow~ LU \boldsymbol x = \boldsymbol b \\~\\ 令 ~~~ U \boldsymbol x = \boldsymbol c~,~~先解~~L \boldsymbol c = \boldsymbol b ~~再解 ~~ U \boldsymbol x = \boldsymbol c \]

 

\[e.g.~~A = \begin{bmatrix} 1 & 2\\ 4 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 4 & 1 \end{bmatrix}_L \begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix}_U ,~~ \boldsymbol b = \begin{bmatrix} ~5 ~\\ 21 \end{bmatrix}~, ~求解~A \boldsymbol x=\boldsymbol b \\~\\ L \boldsymbol c = \boldsymbol b:~~ \begin{bmatrix} 1 & 0\\ 4 & 1 \end{bmatrix} \boldsymbol c = \begin{bmatrix} ~5 ~\\ 21 \end{bmatrix} ~\Rightarrow~ \boldsymbol c = \begin{bmatrix} ~5~ \\ ~1~ \end{bmatrix} \\~\\ U \boldsymbol x = \boldsymbol c:~~ \begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix} \boldsymbol x = \begin{bmatrix} ~5 ~\\ ~1~ \end{bmatrix} ~\Rightarrow~ \boldsymbol x = \begin{bmatrix} ~3~ \\ ~1~ \end{bmatrix} \]

 

\[e.g.~~L = \begin{bmatrix} 1 & 0\\ 4 & 1 \end{bmatrix},~~ U = \begin{bmatrix} 2 & 4\\ 0 & 1 \end{bmatrix},~~ \boldsymbol b = \begin{bmatrix} ~2 ~\\ 11 \end{bmatrix}~, ~求解~LU \boldsymbol x=\boldsymbol b~并验证 \\~\\ L \boldsymbol c = \boldsymbol b:~~ \begin{bmatrix} 1 & 0\\ 4 & 1 \end{bmatrix} \boldsymbol c = \begin{bmatrix} ~2 ~\\ 11 \end{bmatrix} ~\Rightarrow~ \boldsymbol c = \begin{bmatrix} ~2~ \\ ~3~ \end{bmatrix} \\~\\ U \boldsymbol x = \boldsymbol c:~~ \begin{bmatrix} 2 & 4\\ 0 & 1 \end{bmatrix} \boldsymbol x = \begin{bmatrix} ~2 ~\\ ~3~ \end{bmatrix} ~\Rightarrow~ \boldsymbol x = \begin{bmatrix} -5 \\ ~3~ \end{bmatrix} \\~\\ A = LU = \begin{bmatrix} 2 & 4\\ 8 & 17 \end{bmatrix}~~~ A \boldsymbol x = \begin{bmatrix} 2 & 4\\ 8 & 17 \end{bmatrix} \begin{bmatrix} -5 \\ ~3~ \end{bmatrix} = \begin{bmatrix} ~2~ \\ 11 \end{bmatrix} = \boldsymbol b \]

 

\[e.g.~~L = \begin{bmatrix} 1 & 0 & 0\\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix},~~ U = \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix},~~ \boldsymbol b = \begin{bmatrix} 4\\ 5\\ 6 \end{bmatrix} , ~求解~LU \boldsymbol x=\boldsymbol b\\~\\ L\boldsymbol c = \boldsymbol b :~~ \begin{bmatrix} 1 & 0 & 0\\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \boldsymbol c = \begin{bmatrix} 4\\ 5 \\ 6 \end{bmatrix} ,~~ \boldsymbol c = \begin{bmatrix} 4\\ 1 \\ 1 \end{bmatrix} \\~\\ U \boldsymbol x = \boldsymbol c:~~ \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \boldsymbol x = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix},~~ \boldsymbol x = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} \]

 
时间复杂度分析(直播弹幕勘误)
 

在两次的求解中,我们遇到的都是三角矩阵,因此运用代入法可以快速地求解

在进行 \(A=LU\) 分解时,仍要用到高斯消元,对 \(A\) 高斯消元的时间复杂度为 \(\cfrac{1}{3}n^3\)

而求解三角矩阵的时间复杂度为 \(n^2\),因此这个方法更适合对多个 \(b\) 求解:

\[i.e.~~在求得~L~和~U~的情况下,后续求解时间复杂度从~O(n^3)~降低至~O(n^2) \]

对于带状矩阵(除主对角线外还有 \(w\) 个非零对角线),则可大大降低时间复杂度:

\[i.e.~~A~to~U:~nw^2~,~~~Solve: ~2nw~ \]

 

4. 矩阵的转置

 

将矩阵的行与列互换,得到矩阵 \(A\) 的转置,记为 \(A^T\)

\(m\times n\) 矩阵的转置是 \(n\times m\) 矩阵

沿对角线翻转:

\[e.g.~~A_{2 \times 3}= \begin{bmatrix} 1 & 2 & 3\\ 0 & 0 & 4 \end{bmatrix} ~\Rightarrow~ A^T = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 3 & 4 \end{bmatrix} \]

矩阵转置的性质:

\[\begin{aligned} 1.~~&(A^T)^T = A \\ 2.~~&(A + B)^T = A^T + B^T\\ 3.~~&(AB)^T = B^T A^T,~~(ABC)^T = C^T B^T A^T\\ 4.~~&(A^{-1})^T = (A^T)^{-1} \end{aligned} \]

 

\[proof~of~3:~~设~A_{m \times n} = [~\boldsymbol {a_1},...,\boldsymbol {a_n}~],~~B_{n \times p} = [~\boldsymbol {b_1},...,\boldsymbol {b_p}~] \\~\\ 左式~= (AB)^T = [~A\boldsymbol {b_1},....A\boldsymbol {b_p}~] = \begin{bmatrix} ~(A \boldsymbol {b_1})^T~ \\ \vdots \\ ~(A \boldsymbol {b_p})^T \end{bmatrix} \\~\\ 左式~= B^TA^T= \begin{bmatrix} ~(\boldsymbol {b_1})^T~ \\ \vdots \\ ~(\boldsymbol {b_p})^T \end{bmatrix} A^T = \begin{bmatrix} ~\boldsymbol{b_1}^TA^T~ \\ \vdots \\ ~\boldsymbol{b_p}^TA^T~ \end{bmatrix} \\~\\ 左式=右式~\Leftrightarrow~(A \boldsymbol {b_j})^T = \boldsymbol {b_j}^T A^T ~~下证:(A \boldsymbol {b_j})^T = \boldsymbol {b_j}^T A^T \\~\\ \begin{aligned} \left( A \begin{bmatrix} ~b_{1j}~ \\ \vdots \\ ~b_{nj}~ \end{bmatrix} \right)^T &= [~b_{1j}\boldsymbol {a_1}+...+b_{nj}\boldsymbol {a_n}~]^T = b_{1j}\boldsymbol {a_1}^T + ... + b_{nj}\boldsymbol {a_n}^T \\ & =[~b_{1j}~~...~~b_{nj}~] \begin{bmatrix} ~(\boldsymbol {a_1})^T~ \\ \vdots \\ ~(\boldsymbol {a_n})^T \end{bmatrix} = \boldsymbol {b_j}^TA^T \end{aligned} \]

 

\[\begin{aligned} proof~of~4:~~A^T(A^{-1})^T&=(A^{-1}A)^T=I^T=I \\ (A^{-1})^TA^T &= (AA^{-1})^T=I^T=I \end{aligned} \]

 

\[A~有逆~\Leftrightarrow~A^T~有逆 \]

 

\[A=LDU~\Rightarrow~A^T=U^TD^TL^T,~~~D=D^T \]

 

5. 转置的应用:内积

 

\[\begin{aligned} ^T~is~inside&:~~\boldsymbol x\cdot\boldsymbol y=\boldsymbol x^T \boldsymbol y = \boldsymbol y^T \boldsymbol x ~~~~ (1\times n)(n \times 1)\\ ^T~is~outside&:~~ \boldsymbol x \times \boldsymbol y = \boldsymbol x \boldsymbol y^T ~~~~(n\times 1)(1 \times n) \end{aligned} \]

 

\(A^T\)\(A\) 的行与列互换(沿对角线翻转)

\(A^T\) 是取任意 \(x,y\),能使下列两个内积相等的矩阵:

\[(A \boldsymbol x)^T \boldsymbol y = \boldsymbol x^T(A^T \boldsymbol y) \]

 

\[e.g.~~A = \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1 \end{bmatrix},~~ \boldsymbol x = \begin{bmatrix} ~x_1~\\ ~x_2~ \\ ~x_3~ \end{bmatrix},~~ \boldsymbol y = \begin{bmatrix} ~y_1~\\ ~y_2~ \end{bmatrix} \\~\\ \begin{aligned} A \boldsymbol x = \begin{bmatrix} ~x_1 + x_2~\\ ~x_2 + x_3 \end{bmatrix}~~~ (A \boldsymbol x)^T &= y_1(-x_1+x_2)+y_2(-x_2+x_3) \\ &=x_1(-y_1)+x_2(y_1-y_2)+x_3y_2 \\~\\ A^T = \begin{bmatrix} -1 & 0\\ 1 & -1 \\ 0 & 1 \end{bmatrix} ~\Rightarrow ~A^T\boldsymbol y &= \begin{bmatrix} ~-y_1~\\ ~y_1-y_2~ \\ ~y_2~ \end{bmatrix} ~\Rightarrow ~ (A \boldsymbol x)^T \boldsymbol y = \boldsymbol x^T(A^T \boldsymbol y) \end{aligned} \]

 

6. 对称矩阵

 

对称矩阵的定义:若 $ S^T = S$,则 \(S\) 是一个对称矩阵

\[e.g.~~S = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}~~~~ D = \begin{bmatrix} 1 & 0\\ 0 & 2 \end{bmatrix} \]

对称矩阵的逆矩阵也是对称矩阵:

\[e.g.~~S^{-1}= \begin{bmatrix} 5 & -2\\ -2 & 1 \end{bmatrix}~~~~ D^{-1} = \begin{bmatrix} 1 & 0\\ 0 & \cfrac{1}{2} \end{bmatrix} \]

 

\[proof:~~(S^{-1})^T = (S^T)^{-1}=S^{-1} ~\Rightarrow~ S^{-1}~也对称 \]

 

对称矩阵的性质:

\[取任意 ~m\times n~ 矩阵 ~A~,则 ~A^T A~ 是 ~n \times n~ 对称矩阵,~AA^T~ 是 ~m \times m~ 对称矩阵 \]

 

\[proof:~~(A^TA)^T=A^T(A^T)^T=A^TA \]

 

\[e.g.~~ A = \begin{bmatrix} -1 & 1 & 0~\\ 0 & -1 & 1~ \end{bmatrix}~~~计算~A^TA,~AA^T \\~\\ A^TA = \begin{bmatrix} -1 & 0\\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0~\\ 0 & -1 & 1~ \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0\\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} ~~~ AA^T = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \]

 

可以注意到,\(A^TA,~AA^T\) 的对角元都是非负数:

\[(A^TA)_{ii}=\sum\limits^m_{k=1}a_{ik}^2 \geq 0 \]

 

\(S\) 是对称矩阵,且在消元过程中不需要进行「行的置换」:

 

\[S=LDU =(LDU)^T=U^TD^TL^T=U^TDL^T \\~\\ \Rightarrow~ L = U^T ~\Rightarrow~ U = L^T \\~\\ 将对称矩阵~S~表示~S=LDL^T \]

 

\[proof:~~S^T=(LDL^T)^T=(L^T)^TD^TL^T=LDL^T=S \]

 

\[\begin{aligned} e.g.~~S =& \begin{bmatrix} 1 & 4 & 5 \\ 4 & 2 & 6 \\ 5 & 6 & 3 \end{bmatrix} \to \begin{bmatrix} 1 & 4 & 5 \\ 0 & -14 & -14 \\ 0 & -14 & -22 \end{bmatrix} \to \begin{bmatrix} 1 & 4 & 5 \\ 0 & -14 & -14 \\ 0 & 0 & -8 \end{bmatrix}_U \\~\\& \begin{bmatrix} 1 & 0 & 0\\ 4 & 1 & 0 \\ 5 & 1 & 1 \end{bmatrix}_L \begin{bmatrix} 1 & 0 & 0\\ 0 & -14 & 0 \\ 0 & 0 & -8 \end{bmatrix}_D \begin{bmatrix} 1 & 4 & 5 \\ 0 & -14 & -14 \\ 0 & 0 & -8 \end{bmatrix}_{L^T} = S \end{aligned} \]

 

\[e.g.~~S = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 0 \end{bmatrix} \to \begin{bmatrix} 2 & -1 & 0 \\ 0 & \cfrac{3}{2} & -1 \\ 0 & -1 & 0 \end{bmatrix} \to \begin{bmatrix} 2 & -1 & 0 \\ 0 & \cfrac{3}{2} & -1 \\ 0 & 0 & -\cfrac{2}{3} \end{bmatrix} \\~\\ 先计算~D~和~U~(i.e.~L^T),然后直接转置~L^T~填入~L \\~\\ S = LDL^T = \begin{bmatrix} 1 & 0 & 0\\ -\cfrac{1}{2} & 1 & 0 \\ 0 & -\cfrac{2}{3} & 1 \end{bmatrix}_L \begin{bmatrix} 2 & 0 & 0\\ 0 & \cfrac{3}{2} & 0 \\ 0 & 0 & -\cfrac{2}{3} \end{bmatrix}_D \begin{bmatrix} 1 & -\cfrac{1}{2} & 0 \\ 0 & 1 & -\cfrac{2}{3} \\ 0 & 0 & 1 \end{bmatrix}_{L^T} \]

 

7. 置换矩阵

 

置换矩阵的定义:置换矩阵 \(P\) 是将单位矩阵 $ I $ 的行以任何形式重排后得到的矩阵

 

\(3 \times 3\) 的置换矩阵有 6 种:

 

\[I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}~~~ P_{21} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}~~~ P_{31} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}~~~ P_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \\~\\ P_{32}P_{21} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}~~~ P_{21}P_{32} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \]

 

前四个 \(I,~P_{21},~P_{31},~P_{32}\) 的转置为自己,后两个 \(P_{32}P_{21},~P_{21}P_{32}\) 互为转置

 

\(m \times n\) 的置换矩阵有 \(n!\)

 

置换矩阵的性质:

\[P^{-1}~ 也是置换矩阵,且有 ~P^{-1} = P^T \\~\\ PP^T=I \]

 

8. 带有行置换的 PA = LU

 

\[A = (E_{21}^{-1}...E_{ij}^{-1}...)_LU ~~~~~~~ A = (E^{-1}...P^{-1}...E^{-1}...P^{-1}...)U \]

 

进行置换的时机:

(1)先置换好 \(A\)\(PA\) 就不需要行置换: \(PA = LU\) (常用)

(2)先消元,也可以消成 \(n\) 个主元,再置换成上三角矩阵 \(A= L_1 P_1U_1\)

 

\[\begin{aligned} e.g.~~& \begin{bmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 7 & 9 \end{bmatrix}_A \to \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 2 & 7 & 9 \end{bmatrix}_{PA} \stackrel{l_{31}=2}{\longrightarrow} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 3 & 7 \end{bmatrix} \stackrel{l_{32}=3}{\longrightarrow} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}_U \\~\\ P =& \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}~~~~ L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix}~~~~ U = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}~~~~ PA = LU \end{aligned} \]

 

定理:

\[若矩阵 ~A~ 可逆,则一定存在置换矩阵 ~P~,使得 ~PA = LU~ \]

 

\[proof:(数学归纳法)~~n = 1~时定理显然成立,假设~n = k~时定理成立 \\~\\ n = k + 1~时,A~可逆,~a_{i1}\neq0,~A'=P_{i1}A\\~\\ 对~A'~消元得~A''= \begin{bmatrix} a_{i1} & * \\ 0 & A_1 \end{bmatrix},且~A'= \begin{bmatrix} 1 & 0 \\ t & I \end{bmatrix}A'' \\~\\ A_1~为~n-1~(i.e.~k)~阶可逆矩阵,故存在~P_1~使得~P_1A_1=L_1U_1,~A_1 = P_1^{-1}L_1U_1\\~\\ \begin{aligned} P_{i1}A = A' = \begin{bmatrix} 1 & 0 \\ t & I \end{bmatrix} \begin{bmatrix} a_{i1} & * \\ 0 & A_1 \end{bmatrix} =& \begin{bmatrix} 1 & 0 \\ t & I \end{bmatrix} \begin{bmatrix} 1 & \\ & P_1^{-1} \end{bmatrix} \begin{bmatrix} 1 & \\ & L_1 \end{bmatrix} \begin{bmatrix} a_{i1} & * \\ 0 & U_1 \end{bmatrix} \\~\\ =& \begin{bmatrix} 1 & \\ & P_1^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ P_1t & I \end{bmatrix} \begin{bmatrix} 1 & \\ & L_1 \end{bmatrix} \begin{bmatrix} a_{i1} & * \\ 0 & U_1 \end{bmatrix} \\~\\ \begin{bmatrix} 1 & \\ & P_1 \end{bmatrix}P_{i1}A =& \begin{bmatrix} 1 & 0 \\ P_1t & L_1 \end{bmatrix}_L \begin{bmatrix} a_{i1} & * \\ 0 & U_1 \end{bmatrix}_U = LU \\~\\ 令~P=\begin{bmatrix} 1 & \\ & P_1 \end{bmatrix} &P_{i1}~\Rightarrow~PA = LU \end{aligned} \]

 

\[e.g.~~用~PA=LU~表示~A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 1 \\ 1 & 1 & 1 \end{bmatrix} \\~\\ \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 1 \\ 1 & 1 & 1 \end{bmatrix}_A \stackrel{l_{21}=2}{\longrightarrow} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \stackrel{l_{31}=1}{\longrightarrow} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \stackrel{P_{23}}{\longrightarrow} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}_U \\~\\ \begin{aligned} P_{23}E_{31(-1)}E_{21(-2)}A=U ~\Rightarrow~ A=&\left(P_{23}E_{31(-1)}E_{21(-2)}\right)^{-1}U = E_{21(-2)}^{-1}E_{31(-1)}^{-1}P_{23}U\\ \end{aligned} \\~\\ P_{23}= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}~\Rightarrow~ E_{21(-2)}^{-1}E_{31(-1)}^{-1}P_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}_{PL} \\~\\ ~L~应当是下三角矩阵:~L = P_{23}\cdot上式 \\~\\ A = PLU = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}_{P_{23}} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}_L U \\~\\ P_{23}P_{23} = I ~\Rightarrow~P_{23}A = P_{23}P_{23}LU = LU \\~\\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}_P \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 1 \\ 1 & 1 & 1 \end{bmatrix}_A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}_L \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}_U \]

 

\[注意:最后乘的 ~P~ 可能是逆矩阵,且不是本身 \]

posted @ 2022-04-03 21:47  アキスイ·シエスタ  阅读(430)  评论(0)    收藏  举报