Matrix bases
$f: R^{m*n} \rightarrow R$, $A \epsilon R^{m*n}$
$\nabla_Af(A) \epsilon R^{m*n} = [\frac{\partial f(A)}{\partial A_{ij}}]$
$\nabla_x b^Tx = b$
$f: R^{m*n} \rightarrow R$, $A \epsilon R^{m*n}$
$\nabla_Af(A) \epsilon R^{m*n} = [\frac{\partial f(A)}{\partial A_{ij}}]$
$\nabla_x b^Tx = b$