gradient descent & ascent
stochastic gradient descent is to minimize cost function:
$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j}J(\theta)$
while gradient ascent is to maximize likelihood function:
$\theta_j := \theta_j + \alpha \frac{\partial}{\partial \theta_j}l(\theta)$

浙公网安备 33010602011771号