From summation to matrix
x,y $\epsilon R^n$
$x^Ty \epsilon R =\sum_{i=1}^n{x_iy_i}$, 注意将此式扩展。
X is a matrix of m*n.
$X^T X$其第j个对角线元素为$\sum_i X_{ij}^2 $
$\sum_i \sum_j X_{ij}^2 =\sum_j (X^T X)_{jj} = tr X^T X$
$x^{(i)}$ is a vector of n*1; $\vec y \epsilon R^m$
$X^T=[x^{(1)} x^{(2)} ... x^{(m)}]$ m is the number of training set, n is the number of features.
$X^T\vec y=[\sum_{i=1}^m x^{(i)}y^{(i)}] \epsilon R^n$
$(X^TX)_{ij}=\sum_{k=1}^m x_i^k x_j^k$, because
$X^TX=x^{(1)}x^{(1)T}+x{(2)}x{(2)T}...x{(m)}x{(m)T}$, and because $x^{(1)}x^{(1)T}$ is n*n matrix, i row j col element is $x_i*x_j$
so $X^TX=[\sum_{k=1}^m x_i^k x_j^k]$
$\sum_{i=1}^n \sum_{i=1}^n x_i*x_j= \sum_{i=1}^nx_i*\sum_{j=1}^nx_j = (\sum_{i=1}^nx_i)^2$
$w=\sum_{i=1}^m\alpha_iy^{(i)}x^{(i)}$, the jth element of w is $w_j=\sum_{(i=1)}^m \alpha_iy^{(i)}x_j^{(i)}$
take it another way. $w=\sum_{(i=1)}^m\alpha_iy^{(i)}x^{(i)}, w=\sum_{(j=1)}^m\alpha_jy^{(j)}x^{(j)}$
$\left \| w \right \|^2 & = & w^Tw=\sum_{(i=1)}^m\alpha_iy^{(i)}x^{(i)T} \sum_{(j=1)}^m\alpha_jy^{(j)}x^{(j)} = \sum_{(i=1)}^m\sum_{(j=1)}^m\alpha_iy^{(i)}\alpha_jy^{(j)}x^{(i)T}x^{(j)}$

浙公网安备 33010602011771号