Tensorflow学习教程------创建图启动图
参考博客:https://www.cnblogs.com/cnugis/p/7635128.html
视频链接:https://www.bilibili.com/video/av20542427?from=search&seid=3218324014806772997
Tensorflow作为目前最热门的机器学习框架之一,受到了工业界和学界的热门追捧。以下几章教程将记录本人学习tensorflow的一些过程。
在tensorflow这个框架里,可以讲是弱数据类型,也就是说不严格声明数据是什么类型,因为在整个过程中玩的都是向量,或者说矩阵和数组,所有的数据都被看做是一个tensor, 一个或者几个tensor经过一个op(operation)之后,产生新的tensor。首先将所有tensor和op都定义好,然后把这套tensor和op的组合放到默认的图里,用会话启动图,最后我们就看到结果了。以下是创建图和启动图的代码以及结果。
| 1 2 3 4 5 6 7 8 9 10 11 12 | #coding:utf-8importtensorflow as tfm1 =tf.constant([[3,3]])m2 =tf.constant([[2],[3]])product =tf.matmul(m1,m2)print(product)#定义一个会话 启动默认图sess =tf.Session()#调用sess的run方法来执行矩阵乘法result =sess.run(product)print(result)sess.close() | 
结果如下
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally
Tensor("MatMul:0", shape=(1, 1), dtype=int32)
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties: 
name: GeForce GTX 1080 Ti
major: 6 minor: 1 memoryClockRate (GHz) 1.582
pciBusID 0000:03:00.0
Total memory: 10.91GiB
Free memory: 10.24GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0)
[[15]]
 
                    
                
 

 
                
            
         浙公网安备 33010602011771号
浙公网安备 33010602011771号