caffe fastercbnnahdemo

https://download.csdn.net/download/zefan7564/10148990

https://blog.csdn.net/qq_37124237/article/details/81087505

 

目标检测 Faster R-CNN运行及实时性DEMO测试

  1. #!/usr/bin/env python
  2.  
  3. # --------------------------------------------------------
  4. # Faster R-CNN
  5. # Copyright (c) 2015 Microsoft
  6. # Licensed under The MIT License [see LICENSE for details]
  7. # Written by Ross Girshick
  8. # --------------------------------------------------------
  9.  
  10. """
  11. Demo script showing detections in sample images.
  12.  
  13. See README.md for installation instructions before running.
  14. """
  15.  
  16. import _init_paths
  17. from fast_rcnn.config import cfg
  18. from fast_rcnn.test import im_detect
  19. from fast_rcnn.nms_wrapper import nms
  20. from utils.timer import Timer
  21. import matplotlib.pyplot as plt
  22. import numpy as np
  23. import scipy.io as sio
  24. import caffe, os, sys, cv2
  25. import argparse
  26.  
  27. CLASSES = ('__background__',
  28. 'ship')
  29.  
  30. NETS = {'vgg16': ('VGG16',
  31. 'VGG16_faster_rcnn_final.caffemodel'),
  32. 'zf': ('ZF',
  33. 'ZF_faster_rcnn_final.caffemodel'),
  34. 'wyx': ('wyx','vgg_cnn_m_1024_faster_rcnn_iter_1000.caffemodel')}
  35.  
  36.  
  37. def vis_detections(im, class_name, dets, thresh=0.5):
  38. """Draw detected bounding boxes."""
  39. inds = np.where(dets[:, -1] >= thresh)[0]
  40. if len(inds) == 0:
  41. return
  42.  
  43. im = im[:, :, (2, 1, 0)]
  44. fig, ax = plt.subplots(figsize=(12, 12))
  45. ax.imshow(im, aspect='equal')
  46. for i in inds:
  47. bbox = dets[i, :4]
  48. score = dets[i, -1]
  49.  
  50. ax.add_patch(
  51. plt.Rectangle((bbox[0], bbox[1]),
  52. bbox[2] - bbox[0],
  53. bbox[3] - bbox[1], fill=False,
  54. edgecolor='red', linewidth=3.5)
  55. )
  56. ax.text(bbox[0], bbox[1] - 2,
  57. '{:s} {:.3f}'.format(class_name, score),
  58. bbox=dict(facecolor='blue', alpha=0.5),
  59. fontsize=14, color='white')
  60.  
  61. ax.set_title(('{} detections with '
  62. 'p({} | box) >= {:.1f}').format(class_name, class_name,
  63. thresh),
  64. fontsize=14)
  65. plt.axis('off')
  66. plt.tight_layout()
  67. plt.draw()
  68.  
  69.  
  70. def vis_detections_video(im, class_name, dets, thresh=0.5):
  71. """Draw detected bounding boxes."""
  72. global lastColor,frameRate
  73. inds = np.where(dets[:, -1] >= thresh)[0]
  74. if len(inds) == 0:
  75. return im
  76.  
  77. for i in inds:
  78. bbox = dets[i, :4]
  79. score = dets[i, -1]
  80. cv2.rectangle(im,(bbox[0],bbox[1]),(bbox[2],bbox[3]),(0,0,255),2)
  81. cv2.rectangle(im,(int(bbox[0]),int(bbox[1]-20)),(int(bbox[0]+200),int(bbox[1])),(10,10,10),-1)
  82. cv2.putText(im,'{:s} {:.3f}'.format(class_name, score),(int(bbox[0]),int(bbox[1]-2)),cv2.FONT_HERSHEY_SIMPLEX,.75,(255,255,255))#,cv2.CV_AA)
  83.  
  84. return im
  85.  
  86.  
  87.  
  88. def demo(net, im):
  89. """Detect object classes in an image using pre-computed object proposals."""
  90. global frameRate
  91. # Load the demo image
  92. #im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name)
  93. #im = cv2.imread(im_file)
  94.  
  95. # Detect all object classes and regress object bounds
  96. timer = Timer()
  97. timer.tic()
  98. scores, boxes = im_detect(net, im)
  99. timer.toc()
  100. print ('Detection took {:.3f}s for '
  101. '{:d} object proposals').format(timer.total_time, boxes.shape[0])
  102. frameRate = 1.0/timer.total_time
  103. print "fps: " + str(frameRate)
  104. # Visualize detections for each class
  105. CONF_THRESH = 0.8
  106. NMS_THRESH = 0.3
  107. for cls_ind, cls in enumerate(CLASSES[1:]):
  108. cls_ind += 1 # because we skipped background
  109. cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)]
  110. cls_scores = scores[:, cls_ind]
  111. dets = np.hstack((cls_boxes,
  112. cls_scores[:, np.newaxis])).astype(np.float32)
  113. keep = nms(dets, NMS_THRESH)
  114. dets = dets[keep, :]
  115. vis_detections_video(im, cls, dets, thresh=CONF_THRESH)
  116. cv2.putText(im,'{:s} {:.2f}'.format("FPS:", frameRate),(1750,50),cv2.FONT_HERSHEY_SIMPLEX,1,(0,0,255))
  117. cv2.imshow(videoFilePath.split('/')[len(videoFilePath.split('/'))-1],im)
  118. cv2.waitKey(20)
  119.  
  120.  
  121. def parse_args():
  122. """Parse input arguments."""
  123. parser = argparse.ArgumentParser(description='Faster R-CNN demo')
  124. parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
  125. default=0, type=int)
  126. parser.add_argument('--cpu', dest='cpu_mode',
  127. help='Use CPU mode (overrides --gpu)',
  128. action='store_true')
  129. parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]',
  130. choices=NETS.keys(), default='vgg16')
  131.  
  132. args = parser.parse_args()
  133.  
  134. return args
  135.  
  136.  
  137.  
  138.  
  139. if __name__ == '__main__':
  140. cfg.TEST.HAS_RPN = True # Use RPN for proposals
  141.  
  142. args = parse_args()
  143.  
  144. # prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
  145. # 'faster_rcnn_alt_opt', 'faster_rcnn_test.pt')
  146. prototxt = '/home/yexin/py-faster-rcnn/models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_end2end/test.prototxt'
  147. # print 'see prototxt path{}'.format(prototxt)
  148.  
  149.  
  150. # caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
  151. # NETS[args.demo_net][1])
  152. caffemodel = '/home/yexin/py-faster-rcnn/output/faster_rcnn_end2end/voc_2007_trainval/vgg_cnn_m_1024_faster_rcnn_iter_100.caffemodel'
  153.  
  154.  
  155. # print '\n\nok'
  156.  
  157. if not os.path.isfile(caffemodel):
  158. raise IOError(('{:s} not found.\nDid you run ./data/script/'
  159. 'fetch_faster_rcnn_models.sh?').format(caffemodel))
  160. print '\n\nok'
  161.  
  162. if args.cpu_mode:
  163. caffe.set_mode_cpu()
  164. else:
  165. caffe.set_mode_gpu()
  166. caffe.set_device(args.gpu_id)
  167. cfg.GPU_ID = args.gpu_id
  168. net = caffe.Net(prototxt, caffemodel, caffe.TEST)
  169.  
  170. print '\n\nLoaded network {:s}'.format(caffemodel)
  171.  
  172. # Warmup on a dummy image
  173. im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
  174. for i in xrange(2):
  175. _, _= im_detect(net, im)
  176.  
  177. videoFilePath = '/home/yexin/py-faster-rcnn/data/demo/test_1-3.mp4'
  178. videoCapture = cv2.VideoCapture(videoFilePath)
  179. #success, im = videoCapture.read()
  180. while True :
  181. success, im = videoCapture.read()
  182. demo(net, im)
  183. if cv2.waitKey(10) & 0xFF == ord('q'):
  184. break
  185. videoCapture.release()
  186. cv2.destroyAllWindows()
  187.  

 

posted @ 2018-12-24 22:10  水木清扬  阅读(219)  评论(0)    收藏  举报