矩阵A的列空间和A的转置的零空间之间的关系

假设\(A\in\mathbb{R}^{m\times n}, m\ge n.\) 下面将证明以下结论。

  1. \(\mathcal{R}(A) = \mathcal{N}(A^T)^{\perp}\)
  2. \(\mathcal{N}(A^T) \oplus \mathcal{R}(A) = \mathbb{R}^m\)
  3. \(\mathcal{N}(A)\oplus \mathcal{R}(A^T) = \mathbb{R}^n\)

证明:

  1. \(“\mathcal{R}(A) \subset \mathcal{N}(A^T)^{\perp}”\):

    对任意的 \(\pmb{x}\in \mathcal{R}(A),\) 存在 \(\pmb{y}\), 使得 \(A \pmb{y} = \pmb{x}.\)
    对任意的\(\pmb{z} \in \mathcal{N}(A^{T})\), 有\(\pmb{x}^T \pmb{z} = \pmb{y}^T A^T \pmb{z} = 0.\)
    \(\mathcal{R}(A) \subset \mathcal{N}(A^T)^{\perp}\)

    \(“\mathcal{R}(A)^{\perp} \subset \mathcal{N}(A^T)”\):

    对任意的\(\pmb{x} \in \mathcal{R}(A)^{\perp}, \pmb{x} \perp \mathcal{R}(A),\)\(\pmb{y}^T A^T \pmb{x}=0, \forall \pmb{y}.\) 从而有\(A^T \pmb{x} = 0,\) 因此\(\pmb{x} \in \mathcal{N}(A^T).\)\(\mathcal{R}(A)^{\perp} \subset \mathcal{N}(A^T).\)

    因为 \(\mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} = \mathbb{R}^m, \mathcal{N}(A^T)\oplus \mathcal{N}(A^T)^{\perp} = \mathbb{R}^m,\) 所以有

    \[ \mathcal{R}(A) = \mathcal{N}(A^T)^{\perp}. \]

    \(\text{同理也有} \mathcal{R}(A)^{\perp} = \mathcal{N}(A^T).\)

  2. 由1,

\[\mathcal{N}(A^T) \oplus \mathcal{R}(A) = \mathcal{N}(A^T) \oplus \mathcal{N}(A^T)^{\perp} = \mathbb{R}^{m}. \]

  1. 由1,\(\mathcal{R}(A^T) = \mathcal{N}(A)^{\perp}\), 从而

    \[ \mathcal{N}(A)\oplus \mathcal{R}(A^T) = \mathcal{N}(A)\oplus \mathcal{N}(A)^{\perp} = \mathbb{R}^{n}. \]

posted @ 2022-04-29 17:08  舒菜  阅读(1418)  评论(0)    收藏  举报