摘要:
本篇内容介绍了SKLearn的核心板块,并通过SKLearn自带的数据集,讲解一个典型应用案例。 阅读全文
本篇内容介绍了SKLearn的核心板块,并通过SKLearn自带的数据集,讲解一个典型应用案例。 阅读全文
posted @ 2022-03-21 21:45
ShowMeAI
阅读(823)
评论(0)
推荐(0)
摘要:
本篇文章详解机器学习应用流程,应用在结构化数据和非结构化数据(图像)上,借助案例重温机器学习基础知识,并学习应用机器学习解决问题的基本流程。 阅读全文
本篇文章详解机器学习应用流程,应用在结构化数据和非结构化数据(图像)上,借助案例重温机器学习基础知识,并学习应用机器学习解决问题的基本流程。 阅读全文
posted @ 2022-03-21 21:29
ShowMeAI
阅读(667)
评论(0)
推荐(0)
摘要:
Python机器学习实战系列教程,以案例和代码驱动的方式,帮助大家学习机器学习算法应用流程和各个链条环节,掌握构建场景建模解决方案并进行效果调优的能力。 阅读全文
Python机器学习实战系列教程,以案例和代码驱动的方式,帮助大家学习机器学习算法应用流程和各个链条环节,掌握构建场景建模解决方案并进行效果调优的能力。 阅读全文
posted @ 2022-03-21 21:14
ShowMeAI
阅读(312)
评论(0)
推荐(0)

本篇内容是ShowMeAI组织的「图解机器学习算法」系列教程入口,本教程尽量以生动可视化的方式,帮助大家理解机器学习的核心知识和重要的系列模型,并配以相关的代码实现帮助大家了解应用方法。(对机器学习实战感兴趣的同学,可以关注ShowMeAI的另外一个系列[机器学习应用实践])
PCA(主成分分析)可以在对数据完成降维「压缩」的同时,尽量减少信息损失。本文讲解PCA算法的原理、步骤与Python代码实践,并讲解PCA的必要数学基础知识——基变换、方差、协方差等。
聚类是最常见的无监督学习算法。本文讲解聚类问题常见算法及用途,包括划分聚类的K-Means算法、K-Medoids算法,层次聚类的Single-Linkage 算法、Complete-Linkage算法,和DB-SCAN算法。
SVM是机器学习领域非常知名的模型。本文讲解SVM的最大间隔分类器、模型原理、核函数与核技巧等重要知识点,并附上线性核函数、多项式核函数和高斯核函数的Python代码实践。
LightGBM是GBDT的进化版本,在效率、内存、准确率方面表现优秀。本文讲解LightGBM的动机、优缺点及优化点、决策树算法及生长策略、类别性特征支持、并行支持与优化等重要知识点。
XGBoost一个非常强大的Boosting算法工具包,本文讲解XGBoost的算法原理和工程实现,包括监督学习、回归树、集成、Gradient Boosting详细步骤,以及XGBoost的并行列块涉及、缓存访问等工程优化知识。
GBDT是一种迭代的决策树算法,将决策树与集成思想进行了有效的结合。本文讲解GBDT算法的Boosting核心思想、训练过程、优缺点、与随机森林的对比、以及Python代码实现。
浙公网安备 33010602011771号