摘要:
本文介绍GloVe词向量、词向量内部与外部评估方法、类比任务中的词向量训练超参数影响、相关度评估任务中词向量与人工表现差异、基于上下文处理一词多义问题和窗分类。 阅读全文
本文介绍GloVe词向量、词向量内部与外部评估方法、类比任务中的词向量训练超参数影响、相关度评估任务中词向量与人工表现差异、基于上下文处理一词多义问题和窗分类。 阅读全文
posted @ 2022-05-01 08:50
ShowMeAI
阅读(747)
评论(0)
推荐(0)

NLP课程第1讲直接切入语言和词向量,讲解自然语言处理的基本概念、文本表征的方法和演进、包括word2vec等核心方法,词向量的应用等。
本文介绍自然语言处理(NLP)的概念及其面临的问题,进而介绍词向量和其构建方法(包括基于共现矩阵降维和Word2Vec)。
本系列是ShowMeAI组织的斯坦福CS224n《自然语言处理与深度学习》的学习笔记,包含一整套【NLP深度教程】 和【20章课件注释】,是非常TOP的完整学习资料~
ShowMeAI按照不同的技术线与应用领域,以最专业和直观的方式讲解字节、阿里、腾讯、美团、百度等头部企业的核心业务技术解决方案,覆盖推荐&广告、NLP、CV、金融科技等领域。
本篇内容是组织的「深度学习原理知识大全」系列教程入口,教程依托吴恩达老师《深度学习专项课程》,对内容做了重新梳理与制作,以更全面和直观的图文方式,对深度学习涉及的知识、模型、原理、应用领域等进行详解
本篇介绍自然语言处理中关于序列模型的高级知识,包括Sequence to sequence序列到序列模型和注意力机制。
本节介绍自然语言处理的文本表示与词嵌入相关知识,包括:词嵌入与迁移学习/类比推理,词嵌入学习方法,神经概率语言模型,word2vec(skip-gram与CBOW),GloVe,情感分析,词嵌入消除偏见
本节介绍介绍循环神经网络(RNN)的重要知识,包括:循环神经网络RNN,语言模型,采样生成序列,RNN梯度消失与梯度爆炸,GRU(门控循环单元),LSTM(长短期记忆),双向与深度RNN等
本节介绍计算机视觉中其他应用,包括:人脸识别、Siamese网络、三元组损失Triplet loss、人脸验证、CNN表征、神经网络风格迁移、1D与3D卷积。
浙公网安备 33010602011771号