摘要:
真实面试题分享!本文基于餐饮业数据,使用SQL分析挖掘客户的就餐模式、点餐花费和菜品喜好等,以提升餐厅的业务经营水平。 阅读全文
真实面试题分享!本文基于餐饮业数据,使用SQL分析挖掘客户的就餐模式、点餐花费和菜品喜好等,以提升餐厅的业务经营水平。 阅读全文
posted @ 2022-08-29 14:42
ShowMeAI
阅读(1316)
评论(4)
推荐(3)
真实面试题分享!本文基于餐饮业数据,使用SQL分析挖掘客户的就餐模式、点餐花费和菜品喜好等,以提升餐厅的业务经营水平。 阅读全文
气候是全球性的话题,本文基于owid co2数据集,分析了世界各地的二氧化碳排放量,并将二氧化碳排放的主要国家以及二氧化碳排放来源进行了可视化。 阅读全文
SQL与Pandas都可以完成大部分数据分析需求。本文用SQL与Pands逐一实现10类核心数据分析需求,轻松进行对比学习:数据选择、限制、统计计数、排序、新字段生成、数据选择、数据分组、统计均值、方差、极差/范围。 阅读全文
本文介绍AI模型适用于小型本地设备上的方法技术:压缩模型参数量,设计更小的模型结构,知识蒸馏,调整数据格式,数据复用等,并介绍移动小处理设备的类型、适用移动设备的模型框架等。 阅读全文
音乐领域,借助于歌曲相关信息,模型可以根据歌曲的音频和歌词特征,将歌曲精准进行流派分类。本文讲解如何基于机器学习完成对音乐的识别分类。 阅读全文
朋友刚刚拿到了 Google 数据分析师的 Offer!跟她详聊了面试的3道SQL题目,把思路和参考答案一并奉上!各位近期在面试的朋友,可以拿来自测一下~【代码与数据集亲测可运行】 阅读全文
为了让计算机理解、处理和表征非结构化数据,我们通常将其转换为密集向量,而海量向量数据的存储、管理和查询并不简单。本文介绍 Milvus 这个开源向量数据库管理平台的优势、架构和使用案例,了解其在简化『机器学习操作(MLOps)』流程中的应用 阅读全文
如何在海量用户中精准预测哪些客户即将流失?本文结合音乐流媒体平台 Sparkify 数据,详细讲解一个客户流失建模预测案例的全流程:探索性数据分析 EDA、数据处理、进一步数据探索、建模优化、结果评估。【代码与数据集亲测可运行】 阅读全文
运动穿戴设备(比如小米手环、华为手表、fitbit、Apple Watch)中记录了大量的运动数据,也记录着佩戴者的身体状况。本文结合 Kaggle fitbit 数据集,分析运动规律和卡路里的消耗情况。【代码与数据集亲测可运行】 阅读全文
单行代码(one-liner)是一种编程技巧,指将大段代码写成非常简短的形式,更加紧凑,也更加高级!本文总结了 Python 中常用的 9 个 one-linear 技巧:单行 if-else 语句、列表推导式、字典推导式、合并词典、删除列表重复元素、单行多变量赋值、列表元素筛选、字典排序(按key/按value)。 阅读全文