HDU6333-2018ACM暑假多校联合训练1002-Harvest of Apples-莫队+费马小定理
题意很简单啦,求S(n,m)的值
通过打表我们可以知道
S(n + 1, m) = S(n, m) * 2 - C(n, m);
S(n - 1, m) = (S(n, m) + C(n - 1, m)) / 2;
首先我们考虑杨辉三角和二项式定理,但是看了看数据情况,貌似时间不允许呢
这个时候就要祭出莫队算法啦,关于莫队算法呢,更详细的理解请看:2010国家集训队《小Z的袜子》命题报告
莫队算法是一种用于解决可离线的,求区间[L,R]问题的算法
这个题当然就可以离线去求啦,莫队算法在解决离线区间询问几乎是无敌的(分块大法好),复杂度在O(n^3/2)左右
那这个题也妥妥的稳过了
这个题由于在处理阶乘的时候会出现被取余的情况,所以在计算C(L,R)进行除运算阶乘时,计算会不正确,这时候就需要用到费马小定理去计算逆元啦
费马小定理:假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p)。即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。
Problem B. Harvest of Apples
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 3313 Accepted Submission(s): 1284
Problem Description
There are n apples on a tree, numbered from 1 to n.
Count the number of ways to pick at most m apples.
Count the number of ways to pick at most m apples.
Input
The first line of the input contains an integer T (1≤T≤105) denoting the number of test cases.
Each test case consists of one line with two integers n,m (1≤m≤n≤105).
Each test case consists of one line with two integers n,m (1≤m≤n≤105).
Output
For each test case, print an integer representing the number of ways modulo 109+7.
Sample Input
2
5 2
1000 500
Sample Output
16
924129523
#include <iostream> #include <cmath> #include <algorithm> using namespace std; const int maxn = 1e5 + 10; const int mod = 1e9 + 7; const int MAX = 1e5; int pos[maxn]; long long ans[maxn]; long long jx[maxn]; long long jxny[maxn]; struct node { int l, r; int id; bool operator < (node a) const { if (pos[id] == pos[a.id]) return r < a.r; return pos[id] < pos[a.id]; } }q[maxn]; long long quick_mod(long long n, long long m) { long long ret = 1; while (m>0) { if (m & 1) ret = ret * n%mod; n = n * n%mod; m >>= 1; } return ret; }//快速幂 void init() { jx[0] = 1; for (int i = 1; i <= MAX; i++) { jx[i] = (jx[i - 1] * i) % mod; } jxny[MAX] = quick_mod(jx[MAX], mod - 2); for (int i = MAX - 1; i >= 0; i--) { jxny[i] = jxny[i + 1] * (i + 1) % mod; } }//预处理阶乘和逆元 long long get(int l, int r) { if (r > l) return 0; return jx[l] * jxny[r] % mod * jxny[l - r] % mod; } int main() { init(); ios::sync_with_stdio(false); int t; cin >> t; int sq = sqrt(10000); for (int i = 0; i < t; i++) { cin >> q[i].l >> q[i].r; q[i].id = i; pos[i] = q[i].l / sq; } sort(q,q+t); int l = 1, r = 0; long long num = 1; for (int i = 0; i < t; i++) { while (l < q[i].l) { num = (num * 2 + mod - get(l,r)) % mod; l++; } while (l > q[i].l) { l--; num = (num + get(l, r)) * quick_mod(2, mod - 2) % mod; } while (r < q[i].r) { r++; num = (num + get(l, r) + mod) % mod; } while (r > q[i].r) { num = (num - get(l, r) + mod) % mod; r--; } ans[q[i].id] = num; } for (int i = 0; i < t; i++) cout << ans[i] << endl; return 0; }

浙公网安备 33010602011771号