svo笔记

使用

要想在ros中有更多的debug信息,要在global.h中把ros log的级别设为debug,最简单的就是把SVO_DEBUG_STREAM(x)改成ROS_INFO_STREAM(x)

#define SVO_DEBUG_STREAM(x) ROS_INFO_STREAM(x)

代码框架

一些状态的表示

enum Stage {
        STAGE_PAUSED,
        STAGE_FIRST_FRAME,
        STAGE_SECOND_FRAME,
        STAGE_DEFAULT_FRAME,
        STAGE_RELOCALIZING
};
enum TrackingQuality {
    TRACKING_INSUFFICIENT, TRACKING_BAD, TRACKING_GOOD
};
enum UpdateResult {
    RESULT_NO_KEYFRAME, RESULT_IS_KEYFRAME, RESULT_FAILURE
};

主要的类

FrameHandlerMono::FrameHandlerMono(vk::AbstractCamera* cam) :
  FrameHandlerBase(),  //基类
  cam_(cam),    //相机模型
  reprojector_(cam_, map_),
  depth_filter_(NULL)
{
  initialize();
}

void FrameHandlerMono::initialize()
{
  //fast feature detector  
  feature_detection::DetectorPtr feature_detector(
      new feature_detection::FastDetector(
          cam_->width(), cam_->height(), Config::gridSize(), Config::nPyrLevels()));
//
  DepthFilter::callback_t depth_filter_cb = boost::bind(
      &MapPointCandidates::newCandidatePoint, &map_.point_candidates_, _1, _2);
//深度滤波线程
// 构造函数 DepthFilter(feature_detection::DetectorPtr feature_detector, callback_t seed_converged_cb);

  depth_filter_ = new DepthFilter(feature_detector, depth_filter_cb);   
  depth_filter_->startThread();
}

整个就是一个状态机,不同的stage对应不同的处理函数

void FrameHandlerMono::addImage(const cv::Mat& img, const double timestamp)
{
 // some cleanup from last iteration, can't do before because of visualization
  core_kfs_.clear();
  overlap_kfs_.clear();

  // create new frame
  new_frame_.reset(new Frame(cam_, img.clone(), timestamp));

  // process frame
  UpdateResult res = RESULT_FAILURE;
  if(stage_ == STAGE_DEFAULT_FRAME)
    res = processFrame();
  else if(stage_ == STAGE_SECOND_FRAME)
  //足够的视差
    res = processSecondFrame();
  else if(stage_ == STAGE_FIRST_FRAME)
    //有足够的特征点就够
    res = processFirstFrame();
  else if(stage_ == STAGE_RELOCALIZING)
    res = relocalizeFrame(SE3(Matrix3d::Identity(), Vector3d::Zero()),
                          map_.getClosestKeyframe(last_frame_));

  // set last frame
  last_frame_ = new_frame_;
  new_frame_.reset();
}
FrameHandlerBase::UpdateResult FrameHandlerMono::processFrame()
{
  // Set initial pose TODO use prior
  //使用上一时刻的pose作为初始值
  new_frame_->T_f_w_ = last_frame_->T_f_w_;

  // sparse image align
  // frame -- last frame,初始的估计
  SparseImgAlign img_align(Config::kltMaxLevel(), Config::kltMinLevel(),
                           30, SparseImgAlign::GaussNewton, false, false);
  size_t img_align_n_tracked = img_align.run(last_frame_, new_frame_);

  // map reprojection & feature alignment
  //frame -- map,优化点的位置,增加frame中的点,跟orbslam中的投影localmap相似
  reprojector_.reprojectMap(new_frame_, overlap_kfs_);

  const size_t repr_n_new_references = reprojector_.n_matches_;
  const size_t repr_n_mps = reprojector_.n_trials_;
  if(repr_n_new_references < Config::qualityMinFts())
  {
    new_frame_->T_f_w_ = last_frame_->T_f_w_; // reset to avoid crazy pose jumps
    tracking_quality_ = TRACKING_INSUFFICIENT;
    return RESULT_FAILURE;
  }

  // pose optimization
  // pose的优化
  pose_optimizer::optimizeGaussNewton(
      Config::poseOptimThresh(), Config::poseOptimNumIter(), false,
      new_frame_, sfba_thresh, sfba_error_init, sfba_error_final, sfba_n_edges_final);
  if(sfba_n_edges_final < 20)
    return RESULT_FAILURE;

  // structure optimization
  //点的优化
  optimizeStructure(new_frame_, Config::structureOptimMaxPts(), Config::structureOptimNumIter());

  // select keyframe
  core_kfs_.insert(new_frame_);
  setTrackingQuality(sfba_n_edges_final);
  if(tracking_quality_ == TRACKING_INSUFFICIENT)
  {
    new_frame_->T_f_w_ = last_frame_->T_f_w_; // reset to avoid crazy pose jumps
    return RESULT_FAILURE;
  }

  double depth_mean, depth_min;
  frame_utils::getSceneDepth(*new_frame_, depth_mean, depth_min);
  if(!needNewKf(depth_mean) || tracking_quality_ == TRACKING_BAD)
  {
    depth_filter_->addFrame(new_frame_);
    return RESULT_NO_KEYFRAME;
  }

  new_frame_->setKeyframe();

  // new keyframe selected
  for(Features::iterator it=new_frame_->fts_.begin(); it!=new_frame_->fts_.end(); ++it)
    if((*it)->point != NULL)
      (*it)->point->addFrameRef(*it);   //维护point看到的frame
  map_.point_candidates_.addCandidatePointToFrame(new_frame_);

  // optional bundle adjustment
#ifdef USE_BUNDLE_ADJUSTMENT
  if(Config::lobaNumIter() > 0)
  {
    SVO_START_TIMER("local_ba");
    setCoreKfs(Config::coreNKfs());
    size_t loba_n_erredges_init, loba_n_erredges_fin;
    double loba_err_init, loba_err_fin;
    ba::localBA(new_frame_.get(), &core_kfs_, &map_,
                loba_n_erredges_init, loba_n_erredges_fin,
                loba_err_init, loba_err_fin);
    SVO_STOP_TIMER("local_ba");
    SVO_LOG4(loba_n_erredges_init, loba_n_erredges_fin, loba_err_init, loba_err_fin);
    SVO_DEBUG_STREAM("Local BA:\t RemovedEdges {"<<loba_n_erredges_init<<", "<<loba_n_erredges_fin<<"} \t "
                     "Error {"<<loba_err_init<<", "<<loba_err_fin<<"}");
  }
#endif

  // init new depth-filters
  depth_filter_->addKeyframe(new_frame_, depth_mean, 0.5*depth_min);

  // if limited number of keyframes, remove the one furthest apart
  if(Config::maxNKfs() > 2 && map_.size() >= Config::maxNKfs())
  {
    FramePtr furthest_frame = map_.getFurthestKeyframe(new_frame_->pos());
    depth_filter_->removeKeyframe(furthest_frame); // TODO this interrupts the mapper thread, maybe we can solve this better
    map_.safeDeleteFrame(furthest_frame);
  }

  // add keyframe to map
  map_.addKeyframe(new_frame_);

  return RESULT_IS_KEYFRAME;
}
FrameHandlerMono::UpdateResult FrameHandlerMono::relocalizeFrame(
    const SE3& T_cur_ref,
    FramePtr ref_keyframe)
{
  SVO_WARN_STREAM_THROTTLE(1.0, "Relocalizing frame");
  if(ref_keyframe == nullptr)
  {
    SVO_INFO_STREAM("No reference keyframe.");
    return RESULT_FAILURE;
  }
  SparseImgAlign img_align(Config::kltMaxLevel(), Config::kltMinLevel(),
                           30, SparseImgAlign::GaussNewton, false, false);
  size_t img_align_n_tracked = img_align.run(ref_keyframe, new_frame_);
  if(img_align_n_tracked > 30)
  {
    SE3 T_f_w_last = last_frame_->T_f_w_;
    last_frame_ = ref_keyframe;
    FrameHandlerMono::UpdateResult res = processFrame();
    if(res != RESULT_FAILURE)
    {
      stage_ = STAGE_DEFAULT_FRAME;
      SVO_INFO_STREAM("Relocalization successful.");
    }
    else
      new_frame_->T_f_w_ = T_f_w_last; // reset to last well localized pose
    return res;
  }
  return RESULT_FAILURE;
}

Tracking 姿态估计

frame to frame

优化的变量使用红色表示,优化的residual变量使用蓝色表示

计算第k帧和第k−1帧中的特征点对的patch的灰度差, 点是上一时刻已经知道深度的点做投影,使用的是\(4\times4\)的patch,因为是跟上一帧进行对比,没有做affine transformation(仿射变换的)

使用inverse compositional,在最小二乘法中保持jacobian在更新的过程中保持不变,减少计算量

jacobian计算的过程中,reference patch \(I_{k-1}(u_i)\)和point \(p_i\)是保持不变的。所以计算的雅可比是不变的

更新的公式

class SparseImgAlign : public vk::NLLSSolver<6, SE3>    //优化变量是6个自由度,se3空间表示的
{
public:
//计算不变的jacobian,和上一帧特征点对应的patch
    void precomputeReferencePatches()
    {
        Matrix<double,2,6> frame_jac;
        //
        Frame::jacobian_xyz2uv(xyz_ref, frame_jac);

        // cache the jacobian
        jacobian_cache_.col(feature_counter*patch_area_ + pixel_counter) =
            (dx*frame_jac.row(0) + dy*frame_jac.row(1))*(focal_length / (1<<level_));
    }

    double computeResiduals(const SE3& T_cur_from_ref,bool linearize_system,
                                bool compute_weight_scale)
    {
        const Vector6d J(jacobian_cache_.col(feature_counter*patch_area_ + pixel_counter));
    
    //权重的设置 ,核函数 `robust_cost.h`
        float weight = 1.0;
        if (use_weights_) {
            weight = weight_function_->value(res / scale_);
        }
    
        if (linearize_system) {
            // compute Jacobian, weighted Hessian and weighted "steepest descend images" (times error)
            const Vector6d J(
                    jacobian_cache_.col(
                            feature_counter * patch_area_
                                    + pixel_counter));
            H_.noalias() += J * J.transpose() * weight;
            Jres_.noalias() -= J * res * weight;
            if (display_)
                resimg_.at<float>((int) v_cur + y - patch_halfsize_,
                        (int) u_cur + x - patch_halfsize_) = res
                        / 255.0;
        }    
    }

    int solve()
    {
        x_ = H_.ldlt().solve(Jres_);
        if((bool) std::isnan((double) x_[0]))
            return 0;
        return 1;
    }

//更新是在右边,并且是负的
    void update(const ModelType& T_curold_from_ref, ModelType& T_curnew_from_ref) {
        T_curnew_from_ref = T_curold_from_ref * SE3::exp(-x_);
    }
};

frame to map

使用上一时刻求出的初始值,对每个当前帧能观察到的地图点p(已经收敛的深度估计),找到观察p角度最小的关键帧r上的对应点\(u_i\),优化得到p在当前帧上的投影\(u′i\)

这一步中的patch采用的是8×8邻域,对应的距离比较大,要做仿射变换。这步不考虑极线约束,为了得到更精确的点位置估计

void Reprojector::reprojectMap(FramePtr frame,
        std::vector<std::pair<FramePtr, std::size_t> >& overlap_kfs) {
    //grid的顺序还做了一次随机的排序,数目是有要求的max_n_kfs,时间限制,实时性
    resetGrid();

    // Identify those Keyframes which share a common field of view.
    //pair中的double是帧与帧之间的距离关系
    list < pair<FramePtr, double> > close_kfs;
    map_.getCloseKeyframes(frame, close_kfs);

    // Sort KFs with overlap according to their closeness
    close_kfs.sort(
            boost::bind(&std::pair<FramePtr, double>::second, _1)
                    < boost::bind(&std::pair<FramePtr, double>::second, _2));
   
    // Reproject all mappoints of the closest N kfs with overlap. We only store
    // in which grid cell the points fall.
    size_t n = 0;
    overlap_kfs.reserve(options_.max_n_kfs);

    for (auto it_frame = close_kfs.begin(), ite_frame = close_kfs.end();
            it_frame != ite_frame && n < options_.max_n_kfs; ++it_frame, ++n) {
        FramePtr ref_frame = it_frame->first;
        overlap_kfs.push_back(pair<FramePtr, size_t>(ref_frame, 0));

        // Try to reproject each mappoint that the other KF observes
        for (auto it_ftr = ref_frame->fts_.begin(), ite_ftr =
                ref_frame->fts_.end(); it_ftr != ite_ftr; ++it_ftr) {
            // check if the feature has a mappoint assigned
            //对应的深度要是已知的
            if ((*it_ftr)->point == NULL)
                continue;

            // make sure we project a point only once
            if ((*it_ftr)->point->last_projected_kf_id_ == frame->id_)
                continue;
            (*it_ftr)->point->last_projected_kf_id_ = frame->id_;
        //改变grid变量 ,加入cell  
            if (reprojectPoint(frame, (*it_ftr)->point))
                overlap_kfs.back().second++;
        }
    }

    // Now project all point candidates
    // 
    boost::unique_lock < boost::mutex > lock(map_.point_candidates_.mut_);
    auto it = map_.point_candidates_.candidates_.begin();
    while (it != map_.point_candidates_.candidates_.end()) {
        if (!reprojectPoint(frame, it->first)) {
            it->first->n_failed_reproj_ += 3;
            if (it->first->n_failed_reproj_ > 30) {
                map_.point_candidates_.deleteCandidate(*it);
                it = map_.point_candidates_.candidates_.erase(it);
                continue;
            }
        }
        ++it;
    }

    // Now we go through each grid cell and select one point to match.
    // At the end, we should have at maximum one reprojected point per cell.

    for (size_t i = 0; i < grid_.cells.size(); ++i) {
        // we prefer good quality points over unkown quality (more likely to match)
        // and unknown quality over candidates (position not optimized)
        if (reprojectCell(*grid_.cells.at(grid_.cell_order[i]), frame))
            ++n_matches_;
        if (n_matches_ > (size_t) Config::maxFts())
            break;
    }

}
bool Reprojector::reprojectCell(Cell& cell, FramePtr frame)
{
  cell.sort(boost::bind(&Reprojector::pointQualityComparator, _1, _2));
  Cell::iterator it=cell.begin();
  while(it!=cell.end())
  {
    ++n_trials_;

    if(it->pt->type_ == Point::TYPE_DELETED)
    {
      it = cell.erase(it);
      continue;
    }

    bool found_match = true;
    if(options_.find_match_direct)
    //优化点的坐标
      found_match = matcher_.findMatchDirect(*it->pt, *frame, it->px);
    if(!found_match)
    {
      it->pt->n_failed_reproj_++;
      if(it->pt->type_ == Point::TYPE_UNKNOWN && it->pt->n_failed_reproj_ > 15)
        map_.safeDeletePoint(it->pt);
      if(it->pt->type_ == Point::TYPE_CANDIDATE  && it->pt->n_failed_reproj_ > 30)
        map_.point_candidates_.deleteCandidatePoint(it->pt);
      it = cell.erase(it);
      continue;
    }
    it->pt->n_succeeded_reproj_++;
    if(it->pt->type_ == Point::TYPE_UNKNOWN && it->pt->n_succeeded_reproj_ > 10)
      it->pt->type_ = Point::TYPE_GOOD;

    Feature* new_feature = new Feature(frame.get(), it->px, matcher_.search_level_);
    //
    frame->addFeature(new_feature);

    // Here we add a reference in the feature to the 3D point, the other way
    // round is only done if this frame is selected as keyframe.
    new_feature->point = it->pt;

    if(matcher_.ref_ftr_->type == Feature::EDGELET)
    {
      new_feature->type = Feature::EDGELET;
      new_feature->grad = matcher_.A_cur_ref_*matcher_.ref_ftr_->grad;
      new_feature->grad.normalize();
    }

    // If the keyframe is selected and we reproject the rest, we don't have to
    // check this point anymore.
    it = cell.erase(it);

    // Maximum one point per cell.
    return true;
  }
  return false; 
}
bool Matcher::findMatchDirect(
    const Point& pt,
    const Frame& cur_frame,
    Vector2d& px_cur)
{
//看到point的有最小的角度frame
  if(!pt.getCloseViewObs(cur_frame.pos(), ref_ftr_))
    return false;

    // warp affine
  warp::getWarpMatrixAffine(
      *ref_ftr_->frame->cam_, *cur_frame.cam_, ref_ftr_->px, ref_ftr_->f,
      (ref_ftr_->frame->pos() - pt.pos_).norm(),
      cur_frame.T_f_w_ * ref_ftr_->frame->T_f_w_.inverse(), ref_ftr_->level, A_cur_ref_);
  search_level_ = warp::getBestSearchLevel(A_cur_ref_, Config::nPyrLevels()-1);
  warp::warpAffine(A_cur_ref_, ref_ftr_->frame->img_pyr_[ref_ftr_->level], ref_ftr_->px,
                   ref_ftr_->level, search_level_, halfpatch_size_+1, patch_with_border_);
  createPatchFromPatchWithBorder();

  // px_cur should be set
  Vector2d px_scaled(px_cur/(1<<search_level_));

  bool success = false;
  if(ref_ftr_->type == Feature::EDGELET)
  {
    Vector2d dir_cur(A_cur_ref_*ref_ftr_->grad);
    dir_cur.normalize();
    success = feature_alignment::align1D(
          cur_frame.img_pyr_[search_level_], dir_cur.cast<float>(),
          patch_with_border_, patch_, options_.align_max_iter, px_scaled, h_inv_);
  }
  else
  {
    success = feature_alignment::align2D(
      cur_frame.img_pyr_[search_level_], patch_with_border_, patch_,
      options_.align_max_iter, px_scaled);
  }
}

bundle adjustment

优化pose

void optimizeGaussNewton(
    const double reproj_thresh,
    const size_t n_iter,
    const bool verbose,
    FramePtr& frame,
    double& estimated_scale,
    double& error_init,
    double& error_final,
    size_t& num_obs)
{

 for(size_t iter=0; iter<n_iter; iter++)
  {
    // overwrite scale
    if(iter == 5)
      scale = 0.85/frame->cam_->errorMultiplier2();

    b.setZero();
    A.setZero();
    double new_chi2(0.0);

    // compute residual
    for(auto it=frame->fts_.begin(); it!=frame->fts_.end(); ++it)
    {
      if((*it)->point == NULL)
        continue;
      Matrix26d J;
      Vector3d xyz_f(frame->T_f_w_ * (*it)->point->pos_);
      Frame::jacobian_xyz2uv(xyz_f, J);

      //residual 是特征点的u,v坐标
      Vector2d e = vk::project2d((*it)->f) - vk::project2d(xyz_f);
      double sqrt_inv_cov = 1.0 / (1<<(*it)->level);
      e *= sqrt_inv_cov;
      if(iter == 0)
        chi2_vec_init.push_back(e.squaredNorm()); // just for debug
      J *= sqrt_inv_cov;
      double weight = weight_function.value(e.norm()/scale);
      A.noalias() += J.transpose()*J*weight;
      b.noalias() -= J.transpose()*e*weight;
      new_chi2 += e.squaredNorm()*weight;
    }

    // solve linear system
    const Vector6d dT(A.ldlt().solve(b));

    // check if error increased
    if((iter > 0 && new_chi2 > chi2) || (bool) std::isnan((double)dT[0]))
    {
      if(verbose)
        std::cout << "it " << iter
                  << "\t FAILURE \t new_chi2 = " << new_chi2 << std::endl;
      frame->T_f_w_ = T_old; // roll-back
      break;
    }

    // update the model
    SE3 T_new = SE3::exp(dT)*frame->T_f_w_;
    T_old = frame->T_f_w_;
    frame->T_f_w_ = T_new;
    chi2 = new_chi2;
    if(verbose)
      std::cout << "it " << iter
                << "\t Success \t new_chi2 = " << new_chi2
                << "\t norm(dT) = " << vk::norm_max(dT) << std::endl;

    // stop when converged
    if(vk::norm_max(dT) <= EPS)
      break;
  }
}

当前帧能看到的点(已知深度的)再次优化他的3d坐标点

void FrameHandlerBase::optimizeStructure(
    FramePtr frame,
    size_t max_n_pts,
    int max_iter)
{
  deque<Point*> pts;
  for(Features::iterator it=frame->fts_.begin(); it!=frame->fts_.end(); ++it)
  {
    if((*it)->point != NULL)
      pts.push_back((*it)->point);
  }
  max_n_pts = min(max_n_pts, pts.size());
  nth_element(pts.begin(), pts.begin() + max_n_pts, pts.end(), ptLastOptimComparator);
  for(deque<Point*>::iterator it=pts.begin(); it!=pts.begin()+max_n_pts; ++it)
  {
    (*it)->optimize(max_iter);
    (*it)->last_structure_optim_ = frame->id_;
  }
}
void Point::optimize(const size_t n_iter)
{
    for(size_t i=0; i<n_iter; i++)
    {
         A.setZero();
        b.setZero();
        double new_chi2 = 0.0;

        // compute residuals
        for(auto it=obs_.begin(); it!=obs_.end(); ++it)
        {
          Matrix23d J;
          const Vector3d p_in_f((*it)->frame->T_f_w_ * pos_);
          Point::jacobian_xyz2uv(p_in_f, (*it)->frame->T_f_w_.rotation_matrix(), J);
          const Vector2d e(vk::project2d((*it)->f) - vk::project2d(p_in_f));
          new_chi2 += e.squaredNorm();
          A.noalias() += J.transpose() * J;
          b.noalias() -= J.transpose() * e;
        }

        // solve linear system
        const Vector3d dp(A.ldlt().solve(b));

          // update the model
        Vector3d new_point = pos_ + dp;
    }
}

Mapping 地图构建

深度估计

CSDN公式推导

博客园

使用后验估计,假设深度值x的分布可以用高斯分布和均匀分布来联合表示

\[p(x/Z,\pi) = \pi N(x/Z,\tau^2) + (1-\pi) U(x/z_{min},z_{max}) \]

其中\(\pi\)表示\(x\)为有效测量的概率,求以下的最大值

\[argmax _{Z,\pi}p(Z,\pi/x_1,...,x_N) \]

相对于变量\(Z,\pi\),\(x_i\)的分布和\(Z,\pi\)无关

\[p(Z,\pi|x_1,...,x_N) \propto p(Z,\pi)\prod \limits_{n} p(x_n|Z,\pi) \]

作者证明,上面可以用Gaussian×Beta分布来近似

\[q(Z,\pi|a_n,b_n,\mu_n,\sigma_n)\triangleq Beta(\pi|a_n,b_n)\cdot N(Z|\mu_n,\sigma_n). \]

迭代更新

\[q(Z,\pi|a_n,b_n,\mu_n,\sigma_n)\approx p(x_n|Z,\pi)q(Z,\pi|a_{n-1},b_{n-1},\mu_{n-1},\sigma_{n-1}) \]

根据上式,在加入新的测量时,seed的近似后验概率分布也会得到更新。当\(\sigma_n\)小于给定阈值时,认为seed的深度估计已经收敛,计算其三维坐标,并加入地图。

keyframe对应的是

void DepthFilter::initializeSeeds(FramePtr frame) {
  Features new_features;
  feature_detector_->setExistingFeatures(frame->fts_);
  feature_detector_->detect(frame.get(), frame->img_pyr_, Config::triangMinCornerScore(), new_features);

  // initialize a seed for every new feature
  seeds_updating_halt_ = true;
  lock_t lock(seeds_mut_); // by locking the updateSeeds function stops
  ++Seed::batch_counter;
  std::for_each(new_features.begin(), new_features.end(),
      [&](Feature* ftr) { seeds_.push_back(Seed(ftr, new_keyframe_mean_depth_, new_keyframe_min_depth_));
      });

  if (options_.verbose)
    SVO_INFO_STREAM( "DepthFilter: Initialized "<<new_features.size()<<" new seeds");
  seeds_updating_halt_ = false;
}

非keyframe对应的是

void DepthFilter::updateSeeds(FramePtr frame)
{

}

void DepthFilter::updateSeed(const float x, const float tau2, Seed* seed)
{
  // 合成正态分布的标准差
  float norm_scale = sqrt(seed->sigma2 + tau2);
  if(std::isnan(norm_scale))
    return;
  // 正态分布
  boost::math::normal_distribution<float> nd(seed->mu, norm_scale);
  // 公式(19)
  float s2 = 1./(1./seed->sigma2 + 1./tau2);
  // 公式(20)计算m.
  float m = s2*(seed->mu/seed->sigma2 + x/tau2);
  // 公式(21)计算C1.
  float C1 = seed->a/(seed->a+seed->b) * boost::math::pdf(nd, x);
  // 公式(22)计算C2。
  float C2 = seed->b/(seed->a+seed->b) * 1./seed->z_range;
  // 概率密度函数归一化
  float normalization_constant = C1 + C2;
  C1 /= normalization_constant;
  C2 /= normalization_constant;
  // 公式(25)
  float f = C1*(seed->a+1.)/(seed->a+seed->b+1.) + C2*seed->a/(seed->a+seed->b+1.);
  // 公式(26)
  float e = C1*(seed->a+1.)*(seed->a+2.)/((seed->a+seed->b+1.)*(seed->a+seed->b+2.))
          + C2*seed->a*(seed->a+1.0f)/((seed->a+seed->b+1.0f)*(seed->a+seed->b+2.0f));

  // update parameters.
  // 公式(23)
  float mu_new = C1*m+C2*seed->mu;
  // 公式(24)变形
  seed->sigma2 = C1*(s2 + m*m) + C2*(seed->sigma2 + seed->mu*seed->mu) - mu_new*mu_new;
  seed->mu = mu_new;
  // 公式(25)(26)联立求a'
  seed->a = (e-f)/(f-e/f);
  // 公式(25)求b'
  seed->b = seed->a*(1.0f-f)/f;
}

资料

改进和不足的地方在博客园和知乎的那篇文章都提了,

svo github

知乎SVO运动估计和深度估计

posted @ 2017-07-08 09:19  逍遥客33  阅读(2468)  评论(1编辑  收藏  举报