2023年10月7日
摘要:
由百川智能推出的新一代开源大语言模型,采用2.6万亿Tokens的高质量语料训练,在多个权威的中文、英文和多语言的通用、领域benchmark上取得同尺寸最佳的效果,发布包含有7B、13B的Base和经过PPO训练的Chat版本,并提供了Chat版本的4bits量化。 一.Baichuan2模型 B
阅读全文
posted @ 2023-10-07 23:28
扫地升
阅读(1079)
推荐(0)
摘要:
ChatGLM2-6B是开源中英双语对话模型ChatGLM-6B的第2代版本,引入新的特性包括更长的上下文(基于FlashAttention技术,将基座模型的上下文长度由ChatGLM-6B的2K扩展到了32K,并在对话阶段使用8K的上下文长度训练);更高效的推理(基于Multi-QueryAtte
阅读全文
posted @ 2023-10-07 23:28
扫地升
阅读(523)
推荐(0)
摘要:
基于Langchain与ChatGLM等语言模型的本地知识库问答应用实现。项目中默认LLM模型改为THUDM/chatglm2-6b[2],默认Embedding模型改为moka-ai/m3e-base[3]。 一.项目介绍 1.实现原理 本项目实现原理如下图所示,过程包括加载文件->读取文本->文
阅读全文
posted @ 2023-10-07 23:27
扫地升
阅读(2456)
推荐(0)
2023年10月5日
摘要:
主要整理了N多年前(2010年)学习C++的时候开始总结的知识点,好长时间不写C++代码了,现在LLM量化和推理需要重新学习C++编程,看来出来混迟早要还的。 1.shared_ptr 解析:shared_ptr是一种计数指针,当引用计数变为0时,shared_ptr所指向的对象将会被删除。如下所示
阅读全文
posted @ 2023-10-05 01:29
扫地升
阅读(113)
推荐(0)
摘要:
主要整理了N多年前(2010年)学习C++的时候开始总结的知识点,好长时间不写C++代码了,现在LLM量化和推理需要重新学习C++编程,看来出来混迟早要还的。 1.const_cast <new_type> (expression)[1] 解析:const_cast转换符用来移除变量的const或v
阅读全文
posted @ 2023-10-05 01:29
扫地升
阅读(238)
推荐(0)
摘要:
主要整理了N多年前(2013年)学习CUDA的时候开始总结的知识点,好长时间不写CUDA代码了,现在LLM推理需要重新学习CUDA编程,看来出来混迟早要还的。 1.CUDA数组 解析:CUDA数组是使用cudaMallocArray()、cudaMalloc3DArray()分配的,使用cudaFr
阅读全文
posted @ 2023-10-05 01:28
扫地升
阅读(466)
推荐(0)
摘要:
Boost官方于2019年12月发布的1.72版编写,共包含160余个库/组件,涵盖字符串与文本处理、容器、迭代器、算法、图像处理、模板元编程、并发编程等多个领域,使用Boost,将大大增强C++的功能和表现力。环境:Windows 10,WSL2,Ubuntu 20.04 LTS,Rider(WS
阅读全文
posted @ 2023-10-05 01:28
扫地升
阅读(328)
推荐(0)
摘要:
主要整理了N多年前(2013年)学习CUDA的时候开始总结的知识点,好长时间不写CUDA代码了,现在LLM推理需要重新学习CUDA编程,看来出来混迟早要还的。 1.CUDA 解析:2007年,NVIDIA推出CUDA(Compute Unified Device Architecture,统一计算设
阅读全文
posted @ 2023-10-05 01:27
扫地升
阅读(700)
推荐(0)
摘要:
主要整理了N多年前(2013年)学习CUDA的时候开始总结的知识点,好长时间不写CUDA代码了,现在LLM推理需要重新学习CUDA编程,看来出来混迟早要还的。 1.闭扫描和开扫描 对于一个二元运算符和一个元输入数组。如果返回输出数组为,那么是闭扫描;如果返回输出数组为,那么是开扫描。串行闭扫描算法,
阅读全文
posted @ 2023-10-05 01:27
扫地升
阅读(253)
推荐(0)
摘要:
TRL(Transformer Reinforcement Learning)是一个使用强化学习来训练Transformer语言模型和Stable Diffusion模型的Python类库工具集,听上去很抽象,但如果说主要是做SFT(Supervised Fine-tuning)、RM(Reward
阅读全文
posted @ 2023-10-05 01:26
扫地升
阅读(1124)
推荐(0)