import cv2
#图片匹配
def pictureMatch(pic,pic1='D:/test/1.jpg',):
# #读取目标图片
target = cv2.imread(pic)
#读取模板图片
template = cv2.imread(pic1)
# 获得模板图片的高宽尺寸
theight, twidth = template.shape[:2]
# 执行模板匹配,采用的匹配方式cv2.TM_SQDIFF_NORMED
result = cv2.matchTemplate(target, template, cv2.TM_SQDIFF_NORMED)
# 归一化处理
cv2.normalize(result, result, 0, 1, cv2.NORM_MINMAX, -1)
# 寻找矩阵(一维数组当做向量,用Mat定义)中的最大值和最小值的匹配结果及其位置
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
# 匹配值转换为字符串
# 对于cv2.TM_SQDIFF及cv2.TM_SQDIFF_NORMED方法min_val越趋近与0匹配度越好,匹配位置取min_loc
# 对于其他方法max_val越趋近于1匹配度越好,匹配位置取max_loc
strmin_val = str(min_val)
# 绘制矩形边框,将匹配区域标注出来
# min_loc:矩形定点
# (min_loc[0]+twidth,min_loc[1]+theight):矩形的宽高
# (0,0,225):矩形的边框颜色;2:矩形边框宽度
cv2.rectangle(target, min_loc, (min_loc[0] + twidth, min_loc[1] + theight), (0, 0, 225), 2)
# 显示结果,并将匹配值显示在标题栏上
# cv2.imshow("MatchResult----MatchingValue=" + strmin_val, target)
# cv2.waitKey()
# cv2.destroyAllWindows()
# print(strmin_val)
return strmin_val