| \(a\equiv b\pmod{p}\) |
a\equiv b\pmod{p} |
| \(a\bmod p\) |
a\bmod p |
| \(\forall\exists\empty\emptyset\varnothing\) |
\forall\exists\empty\emptyset\varnothing |
| \(\in\ni\subset\subseteq\subsetneq\supset\supseteqq\) |
\in\ni\subset\subseteq\subsetneq\supset\supseteqq |
| \(\cap\bigcap\cup\bigcup\biguplus\setminus\smallsetminus\) |
\cap\bigcap\cup\bigcup\biguplus\setminus\smallsetminus |
| \(\sqsubset\sqcap\bigsqcup\) |
\cap\bigcap\cup\bigcup\biguplus\setminus\smallsetminus |
| \(\oplus\bigoplus\pm\mp\) |
\oplus\bigoplus\pm\mp |
| \(\times\otimes\bigotimes\cdot\circ\bullet\bigodot\) |
\times\otimes\bigotimes\cdot\circ\bullet\bigodot |
| \(\star\div\frac{a}{b}\) |
\star\div\frac{a}{b} |
| \(\land\and\wedge\bigwedge\lor\or\vee\bigvee\lnot\neg\And\) |
\land\and\wedge\bigwedge\lor\or\vee\bigvee\lnot\neg\And |
| \(\sqrt{a}\sqrt[n]{a}\) |
\sqrt{a}\sqrt[n]{a} |
| \(\sim\approx\simeq\cong\dot=\overset{\underset{\mathrm{def}}{}}{=}\) |
\sim\approx\simeq\cong\dot=\overset{\underset{\mathrm{def}}{}}{=} |
| \(\le\ll\ge\gg\leqq\geqq\) |
\le\ll\ge\gg\leqq\geqq |
| \(\geqslant\eqslantgtr\gtrsim\gtrapprox\) |
\geqslant\eqslantgtr\gtrsim\gtrapprox |
| \(\vec{a}\overleftarrow{ab}\overrightarrow{ab}\) |
\vec{a}\overleftarrow{ab}\overrightarrow{ab} |
| \(\overbrace{x_1,x_2,\dots x_n}\) |
\overbrace{x_1,x_2,\dots x_n} |
| \(\begin{matrix}n\\\overbrace{x_1,x_2,\dots x_n}\end{matrix}\) |
\begin{matrix}n\\\overbrace{x_1,x_2,\dots x_n}\end{matrix} |
| \(\underbrace{x_1,x_2,\dots x_n}\) |
\underbrace{x_1,x_2,\dots x_n} |
| \(\sum_{a}^{b}\prod_{a}^{b}\coprod_{a}^{b}\) |
\underbrace{x_1,x_2,\dots x_n} |
| \(\langle \rangle\) |
\langle \rangle |