• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录

无信不立

  • 博客园
  • 联系
  • 订阅
  • 管理

公告

View Post

【算法】时间复杂度

一、常用算法复杂度简介

在描述算法复杂度时,经常用到O(1)、O(n)、O(logn)、O(nlogn)来表示对应算法的时间复杂度,

这里进行归纳一下它们代表的含义:

 

O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。 

 

O(n):

  • O(n):时间复杂度为O(n),代表数据量增大几倍,耗时也增大几倍。比如常见的遍历算法。

 

O(n^2)

  • O(n^2):就代表数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。
  • 比如冒泡排序,就是典型的O(n^2)的算法,对n个数排序,需要扫描n×n次。 

 

O(logn)

  • O(logn)当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,比如,当数据增大256倍时,耗时只增大8倍
  • 是比线性还要低的时间复杂度)。
  • 二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就可以找到目标。

 

O(nlogn)

  • O(nlogn):同理,就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。
  • 归并排序就是O(nlogn)的时间复杂度。 

 

 

O(1)

  • O(1):就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。
  • 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(哈希冲突不考虑)

 

二、算法复杂度推导过程

一般用大写O()来表示算法的时间复杂度写法,通常叫做大O记法。

一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。

O(1):常数阶

O(n):线性阶

O(n2):平方阶

大O推导法:

  1. 用常数1取代运行时间中的所有加法常数
  2. 在修改后的运行函数中,只保留最高阶项
  3. 如果最高阶项存在且不是1,则去除与这个项相乘的常数

 常数阶:

int sum = 0 ; n = 100;        /*执行一次*/
sum = (1+n)*n/2;             /*执行一次*/
printf("%d",sum);            /*执行一次*/
View Code

这个算法的运行次数f(n) = 3,根据推导大O阶的方法,第一步是将3改为1,在保留最高阶项是,它没有最高阶项,因此这个算法的时间复杂度为O(1);

另外,

int sum = 0 ; n = 100;        /*执行一次*/
sum = (1+n)*n/2;             /*执行第1次*/
sum = (1+n)*n/2;             /*执行第2次*/
sum = (1+n)*n/2;             /*执行第3次*/
sum = (1+n)*n/2;             /*执行第4次*/
sum = (1+n)*n/2;             /*执行第5次*/
sum = (1+n)*n/2;             /*执行第6次*/
sum = (1+n)*n/2;             /*执行第7次*/
sum = (1+n)*n/2;             /*执行第8次*/
sum = (1+n)*n/2;             /*执行第9次*/
sum = (1+n)*n/2;             /*执行第10次*/
printf("%d",sum);            /*执行一次*/
View Code

上面的两段代码中,其实无论n有多少个,本质是是3次和12次的执行差异。这种与问题的大小无关,执行时间恒定的算法,成为具有O(1)的时间复杂度,又叫做常数阶。

注意:不管这个常数是多少,3或12,都不能写成O(3)、O(12),而都要写成O(1)

此外,对于分支结构而言,无论真假执行的次数都是恒定不变的,不会随着n的变大而发生变化,所以单纯的分支结构(不在循环结构中),其时间复杂度也是O(1)。

 

线性阶:

线性阶的循环结构会复杂一些,要确定某个算法的阶次,需要确定特定语句或某个语句集运行的次数。因此要分析算法的复杂度,关键是要分析循环结构的运行情况。

int i;
for(i = 0 ; i < n ; i++){
  /*时间复杂度为O(1)的程序*/      
}
View Code

对数阶:

int count = 1;
while(count < n){
  count = count * 2;
  /*时间复杂度为O(1)的程序*/    
}
View Code

因为每次count*2后,距离结束循环更近了。也就是说有多少个2 相乘后大于n,退出循环。

数学公式:2x = n    -->     x = log2n

因此这个循环的时间复杂度为O(logn)

平方阶:

int i;
for(i = 0 ; i < n ; i++){
   for(j = 0 ; j < n ; j++){
    /*时间复杂度为O(1)的程序*/  
    }    
}
View Code

上面的程序中,对于对于内层循环,它的时间复杂度为O(n),但是它是包含在外层循环中,再循环n次,因此这段代码的时间复杂度为O(n2)。

int i;
for(i = 0 ; i < n ; i++){
   for(j = 0 ; j < m ; j++){
    /*时间复杂度为O(1)的程序*/  
    }    
}
View Code

但是,如果内层循环改成了m次,时间复杂度就为O(n*m)

再来看一段程序:

int i;
for(i = 0 ; i < n ; i++){
   for(j = i ; j < n ; j++){
    /*时间复杂度为O(1)的程序*/  
    }    
}
View Code

注意:上面的内层循环j = i ;而不是0

因为i = 0时,内层循环执行了n次,当i=1时,执行了n-1次……当i=n-1时,执行了1次,所以总的执行次数为:

n+(n-1)+(n-1)+...+1 = n(n+1)/2  =  n2/2 + n/2

根据大O推导方法,保留最高阶项,n2/2 ,然后去掉这个项相乘的常数,1/2

因此,这段代码的时间复杂度为O(n2)

 

常见的时间复杂度:

执行次数函数 阶 术语描述
12 O(1) 常数阶
2n+3 O(n) 线性阶
3n2+2n+1 O(n2) 平方阶
5log2n+20 O(log2n) 对数阶
2n+3nlog2n+19 O(nlogn) nlog2n阶
6n3+2n2+3n+4 O(n3) 立方阶
2n O(2n) 指数阶

 

 

 

 

 

 

 

 

时间复杂度所耗费的时间是:

O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) <O(2n) < O(n!) <O(nn)

 

 
 

posted on 2019-04-02 19:02  无信不立  阅读(695)  评论(0)    收藏  举报

刷新页面返回顶部
 
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3